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Summary 

 
 Here’s a dense and dry summary of the next 60 pages. We hope that the text itself is more fun and 

more understandable than this abridgement, but in case you want to cut to the point... 

 Ponds have proliferated in Columbia County over the past 50 years. We estimate a 7-10 fold increase 

during this period. This pattern is reflected nationwide. Initially, agricultural considerations drove their con-

struction; of late, construction has been pushed more by landscaping fashion. Our previous work suggested 

that farm ponds could provide valuable habitat to some native species. We undertook this work with the 

goals of better understanding this expanding aquatic habitat, of further exploring ponds as on farm habitats 

and comparing them with ornamental ponds, and of providing pond owners with greater insight into the ecol-

ogy of their ponds. 

 We studied nearly 100 open-land, permanent ponds around the County (although not all data were 

collected for all ponds). We inventoried pond-associated biota (plants, butterflies, dragonflies and amphibi-

ans), measured aspects of the pond physical environment, and gathered remote-sensing data on surrounding 

landuse. We then took this information and asked how these three different aspects of the pond interacted. 

How, for example, does land use affect the biology of our ponds, how does it affect their sediments, how 

does the geology of the pond’s setting influence its life? We will emphasize the fact that ponds need to be 

considered as parts of the greater landscape rather than as isolated worlds to themselves. 

 Our report is hardly exhaustive and it is entirely descriptive. That means that the patterns we highlight 

may hint at cause and effect, may be artifacts in our sample, or may reflect deeper relationships that we did-

n’t understand. Nonetheless, to our knowledge, this is the first time that an extensive  biological study of our 

county’s ponds has been undertaken. We hope that it provides insight and information for those curious to 

understand more about their own ponds and those interested in the ecology of our landscape. 

 In this report, we first explore our information on pond waters and sediments. We collected very lim-

ited data on pond water (pH, Total Dissolved Solids [TDS; measured as conductivity], and surface tempera-

ture). Most of our ponds were basic or circum-neutral, indicating that  buffering of acidic rainfall was occur-

ring.  At least in part, this buffering appeared to be due to the presence of calcareous (i.e., calcium-bearing, 

such as limestone) rocks in our region’s geology. Pond pH showed correlations with pond sediment calcium 

concentrations and with the acidity of the underlying soils as reported by the County soil survey. Total dis-

solved solids, a measure of the amount of nutrients and other materials in a pond’s water, increased in more 

basic ponds probably due in part to the increased levels of dissolved calcium, magnesium and potassium 

ions. There was also a suggestion in the data that TDS increased with greater human development in the sur-

roundings. Temperature data were too scant to allow in-depth analyses. In sum, our initial explorations of 

water characteristics showed a marked link to the geology of the landscape and, perhaps, at least a partial link 

to neighboring land use. 

 Our information on sediments was more extensive. Understanding pond sediments is important both 

because they are historical records of the in-flow of materials to a pond and because they are reserves of nu-

trients, toxins and other compounds, reserves which biological activity and physical mixing can tap. We had 

measures of sediment depth, sediment color (basically, darker sediments indicate more organic matter), and 

the concentrations of several heavy metals (e.g., lead, copper, iron, but not mercury) and potentially impor-

tant nutrients (i.e., phosphorus and potassium). Pond age appeared to play an important role in shaping sedi-

ment depth and color; older ponds tended to have deeper, darker sediments.  

 The sediment concentrations of a variety of elements (aluminium, copper, iron, lead, manganese, 

nickel, phosphorus, vanadium and zinc) exceeded presumed background levels in most of our ponds. For 

several of these elements (iron, lead, managanese, and phosphorus), levels often exceeded values presumed 

to have ecological effects. We did not, however, find strong evidence of major effects in our subsequent 

analyses of the biological data. To better understand patterns in our sediment chemistry data, we used a 

method called principal component analysis to identify clusters of elements that tended to vary together. One 

important cluster of elements seemed to represent a group of elements showing relatively high levels of con-
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tamination or enrichment. This cluster tended to show its highest values in more acidic ponds, with shallower 

sediments and, perhaps, with more nearby houses. The only other cluster which was readily understandable 

was one that represented the sediments with relatively high pH’s (i.e., “alkaline” or “basic” ponds). 

 Thus, as we had already seen with water values, sediment chemistry showed apparent links to under-

lying pond geology and surrounding land use. Sediment color and depth also seemed related to an aspect of 

pond history (i.e., pond age). 

 We began our exploration of pond life by looking at indicators of and factors affecting pond eutrophi-

cation. Eutrophication refers to excessive nutrient enrichment of a pond resulting in unnaturally profuse  

growth of pond plants and algae. It has been recognized as a major human impact on aquatic ecosystems. 

One of the common ways that eutrophication is indexed is by measuring chlorophyll levels in the water. 

(Chlorophyll is the molecule that gives algae and plants their green color.) The index, called the Trophic 

State Index (TSI), has been used by many ecologists and so lets us understand how our ponds compare to 

ponds elsewhere. Forty-one percent of the 92 ponds for which we had data were classified as “eutrophic” 

meaning that their ecologies were likely substantially altered by nutrient in-flow. This compared to 92% of 

13 ponds in a study of a more urban Pennsylvania county, and 16% of 24 ponds in a state-wide Massachu-

setts study.  

 TSI was not correlated with sediment phosphorus (phosphorus is thought to be one of the main nutri-

ents which causes eutrophication); it was correlated with a variety of land use parameters although their in-

terpretation was not straightforward. 

 In order to assess pond plant and algal growth more broadly, we also looked at total aquatic growth—

a variable we created by combining our September measurements of chlorophyll,  spring estimates of algal 

cover, summer estimates of total coverage of aquatic plants, and September estimates of duckweed/water-

meal coverage. Total aquatic growth decreased in the presence of fish and as lawn and woods in the sur-

roundings increased. Sediment phosphorus did not appear to be related to total aquatic growth. 

 In sum, many of our ponds appeared to be “eutrophied”. However eutrophication (measured either as 

chlorophyll concentrations or as total aquatic growth) was not correlated with sediment phosophurus values. 

There appeared to be complex relationships with surrounding land use. 

 After considering eutrophication, we moved on to look at patterns in the diversity of plants and ani-

mals. We found 369 species of plants in or around our ponds. Of these, 158 were wetland species, 41 were 

aquatic, and 170 were upland. We did not look at the factors affecting upland species in any detail, because 

they were probably not closely related to the presence of the pond. For wetland and aquatic species, we de-

scribed the factors correlated with the diversity of native and invasive species. Native wetland plant diversity 

increased as wetland area adjacent to the pond increased and decreased with adjacent development. Native 

aquatic plant diversity was also enhanced when there was added adjacent wetland and as pond age increased. 

Wetland and aquatic invasive plant species (an “invasive” species is a non-native species which is rapidly 

invading certain habitats) showed a strong positive relationship to pH—more basic ponds tended to have 

more invasives. So again, we see the combined influences of  natural geology (as expressed in pH) and land 

use. 

 We found 10 species of frogs and salamanders during our pond study. There are more amphibian spe-

cies in the County, but they were not detected by our methods or favored other habitats. The factor most 

strongly correlated with amphibian diversity and abundance (we combined these two measures into one) was 

non-agricultural development. Amphibians declined as such development increased; they increased as total 

aquatic growth increased. 

 Vernal pool amphibians (those that favor temporary ponds, Wood Frogs and Spotted Salamanders in 

our case) increased as adjacent woodland increased. Such a relation is not surprising given that these species 

pass most of the year not in ponds but rather in the adjacent upland. At least one vernal pool amphibian oc-

curred in 40% of our ponds, despite the fact that all of our ponds were permanent.  

 Interestingly, when fish were present in ponds, amphibian abundance increased as shoreline vegeta-

tion increased; no such pattern was evident when fish were absent. Others have suggested that amphibians 

rely on such vegetation for shelter from fish predation. 
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 We found 47 species of dragonflies and damselflies during our pond surveys. These odonates have 

aquatic larvae and so are closely tied to ponds. We divided our odonates into two groups: specialists and gen-

eralists. The “specialists” were species which the literature indicated have somewhat restricted habitat prefer-

ences, often preferring marshlands or vernal pools as opposed to broad, open ponds. Specialist odonates de-

creased when fish were present, and increased as surrounding pasture increased. The relationship with pas-

ture, which also appeared in our subsequent analysis of butterflies, appeared to be due to the fact that grazed 

ponds tended to have scruffier margins than most other ponds. The importance of pH returned in our study of 

odonates—more basic ponds tended to have more odonate species. 

 Butterflies are not aquatic during any stage of their lives. However, as caterpillars, some species do 

rely largely on wetland plants such as sedges. We divided the 39 species of butterflies that we found into two 

groups—wetland and generalist butterflies. Wetland butterflies were relatively rare and so our analyses were 

limited.  Wetland butterflies increased in abundance as adjacent pastureland increased; we believe that if real, 

this relationship may be due to the increased wetland area tolerated around ponds in pastures vs. in lawns or 

developed land. More wetland, meant more caterpillar food plants. We did not explore the factors affecting 

generalist butterflies in detail because, like upland plants, we presumed they were not closely tied to the 

ponds. Interestingly, initial data exploration suggested a strong relationship between these butterflies and 

pond sediment chemistry. It may be that sediment chemistry reflects the chemistry of the surrounding soils to 

some degree and hence the elements influencing herbivores. 

 We concluded our work by looking at the intercorrelation amongst our diversity measures: plant, but-

terfly and odonate diversity all appeared to be quite intercorrelated; amphibian diversity seemed more inde-

pendent. We created a single measure, “Grand Diversity”, which incorporated all four of our diversity meas-

ures. Grand Diversity increased with increasing pH and decreased as non-agricultural development in the sur-

roundings increased. Given the correlations associated with each of our diversity components, in which pH 

and aspects of land use both regularly showed up as important, these results are not surprising. They confirm 

our impression that the ponds’ biotas are shaped by variation in both the natural setting and the surroundings 

human use.  

 

Our results serve more as background and motive for pond management than as instructions for such. Some 

agricultural ponds (e.g., pasture ponds) tended to have quite high diversity, while those associated with 

higher levels of residential or commercial development tended to be poorer. However, it is probably the 

ramifications of these uses, rather than the uses themselves, that create this pattern. This means that manag-

ing your home pond so that it looks more like a pasture pond, even if you don’t have cattle, may well have 

positive effects on biodiversity. Likewise, letting cows into the water trap at a nearby golf-course is unlikely  

to automatically enhance that pond’s biodiversity. Read in depth, we hope our report provides the tools for 

shaping a vision of the habitat ingredients of relatively diverse ponds. Perhaps this spurs some of you to seek 

out the resources for then including such ingredients in your own pond management. We provide some man-

agement references to get you started! 

To request a digital copy of this report, share observations, make corrections, ask 

questions, or generally shoot the breeze about pond ecology, you can contact us at: 

 

Conrad Vispo & Claudia Knab-Vispo 

Farmscape Ecology Program 

Hawthorne Valley Farm 

327 Rte. 21C 

Ghent, NY 12075 

 

fep@taconic.net; (518) 672-7500 ext. 254 
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Ponds of Columbia County:  

Patterns in their Biodiversity; Thoughts on their Management. 
 

Introduction 
 Our landscape has hues, it does not have components in the same sense that a car has components. 

While its hues can be named and described, they bleed into one another; they are not standardized and discrete. 

A pond is such a hue. While most ponds have distinct shores where water meets land, much of a pond is not so 

easily bound – dust settles from the air, water flow brings in the effluent of the surrounding land, organisms 

creep or fly in and out. Nor are most ponds independent in history – a large majority of our ponds reflect not 

just water’s urge to pool, but also humankind’s urge to dig watering spots, fishing holes, fire ponds, reflecting 

pools and the like. 

 The point of this little work is 

to show how the lands that surround a 

pond meld into the pond itself and how 

the pond reaches out and into the 

surrounding history and landscape. 

Aside from informing our view of the 

landscape, these linkages have 

implications for our actions, because 

much of what affects a pond derives 

from our own influence on the land. 

 There is much to know about 

our ponds and about the landscape and 

history of our county. This review is 

patchy and incomplete; we hope that it 

is nonetheless illustrative. 

 

 Why focus on ponds? Because they are something new and different, literally.  

 Ponds are the most rapidly growing of our aquatic habitats; indeed, they are probably the only class of 

still-water wetland that is not declining nationally and regionally (see Fig. 1). The latest national assessment of 

wetlands announced that for the first time in the past 200 years, wetland area increased in the US. Although 

rates of decline for other types of wetlands have moderated, the sole reason for this increase was the increase in 

pond construction. In local terms, when we used aerial photos to count ponds in a square mile around one 

Columbia County  Farm, we found an increase from 2 ponds in 1948 to 24 ponds in 2004. Of the 97 ponds we 

aged (using historical aerial photos), only 13 were present when the first set of photos was taken in the 1940s 

(Fig. 2). The rate of subsequent pond construction has been high (Fig. 3). This pond-building flurry has much to  

Fig. 1. The history of pond extent in the USA. Taken directly from Dahl 2005.  
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Fig. 2 Columbia County pond construction during differing 

time periods, based on our sample of 97 ponds.  

Fig. 3  Estimated rates of pond construction (ponds built per year) 

rates are calculated for a hypothetical sample of 100 extant ponds. 
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do with the recent history of our landscape. 

 In the 1960s and ‘70s, the US government 

subsidized extensive farm pond construction. Farmers 

took advantage of these monies to build ponds for 

livestock watering, irrigation, and run-off control. 

After that period, agricultural and residential 

purposes were both important, with the residential 

probably dominating during the past 5 – 10 years. 

Reportedly, on-site fire ponds ease insurance costs, 

however, much of the momentum comes from 

fashion – a pond has become a desired component of 

a rural property. The landscaping of corporate and 

private properties now frequently includes the 

installation of a pond. This rapid proliferation of 

ponds (Fig. 4) prompts our investigation of their role 

as aquatic habitats. Are all these ponds providing 

valuable aquatic habitat? Or, as the author of the 

latest national wetland assessment poses the problem,  

 

Without the increased pond acreage, 

wetland gains would not have surpassed wetland losses during the timeframe of this study. 

Although increases in pond acreage were important in meeting the national wetland quantity 

goals, creation of some types of ponds may not meet the national wetland quality goals 

established in 2004. Ponds created as mitigation for the loss of some vegetated wetland types 

are not an equivalent replacement for those wetlands. Gauging the functional value of ponds 

and predicting their long term viability will require additional work. 1 

 

 Our previous work provided additional justification for our focus on ponds. Our initial studies of farm 

ponds indicated that some ponds were utilized by amphibians, including vernal pool species. Researchers in 

other areas have also concluded that some farm ponds can provide valuable amphibian habitat. We were 

intrigued and decided to continue our exploration of the biodiversity of on-farm habitats by focusing on ponds 

and trying to better understand their conservation value for native organisms. As a point of comparison and 

because of their rapid proliferation, we also looked at ornamental  ponds in residential or commercial areas.2 

 Finally, and related to the first point, the public is interested in ponds. Our public displays during the 

summer months frequently result in questions about ponds or their inhabitants. Often these are management 

questions such as “My pond is green, what do I do?”. While it might seem a stretch, this is really an ecological 

question, and the answer may have as much to do with ecological outreach as it does with providing active 

management solutions. (To paraphrase Winfield Fairchild, a pond ecologist, one needs to show people that 

‘green is beautiful’.)3  

 After reading the report that follows, we hope that you will better appreciate the interconnectedness of 

our landscape, the rich ecology of your ponds, and your role in maintaining that ecology. 

 

A Warning 

 The descriptions that follow rely heavily on graphs and some pseudo-statistical analyses. While we have 

done our best to tie these numbers to reality, there are tables and graphs nonetheless. We believe that these 

details are important for ‘truth in reporting’ – how can you, or anyone else, make reasoned judgments 

concerning land use if you do not have access to basic data and analyses? Without those data, you would just 

have to trust us and, take it from us, that’s a risky proposition! So, please do not be deterred if you see lots of 

numbers and figures – they are just numeric ways of describing observations. If you explore them enough, you 

will surely come to question some of our conclusions, because what we present are only considerations of 

evidence not absolute truths. If you come to a reasoned disagreement with some of our conclusions we’ll be 

Fig. 4.  A new pond under construction. While ponds can add 

beauty,  recreation potential and a source of water in case of 

fire, it is worth asking of any new pond—what wetland habitat 

might it be replacing? And, will the pond that results have eco-

logical value for native species? 
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happy, not because we like to be wrong, but because it would show that you’ve really dug in.  

 Statistics are a way of summarizing numbers and asking how likely a given result is by chance alone. In 

order to do this with 100% validity, one’s data has to meet certain assumptions. Our data doesn’t always do this 

for reasons that will be mentioned later. Thus, the statistical results that we cite should be seen as indicators of 

patterns and their relative strength rather than as rigorous tests of statistical significance. Furthermore, while our 

interest in correlations and comparisons derives from an interest in possible cause and affect, these correlations 

alone only indicate that two (or more) variables vary in similar ways; conclusions about cause and effect can 

only be made based on background information and, ultimately, are best tested through experimentation when 

possible. Finally, probability alone tells us that some of the apparent relationships highlighted by our statistical 

analyses are likely due to happenstance and don’t reflect broader ecological patterns. 

 

Part I: The Pond Itself 
THE PONDS WE STUDIED  

 We studied 97 open ponds scattered across Columbia County (Fig. 

5). We intentionally avoided including ponds surrounded by forest. We 

may include these at a future date, however because of our limited 

person-power and the fact that our questions related primarily to open 

ponds in altered landscapes, we did not include entirely forested ponds in 

a semi-wild state. Our ponds did vary widely in their proximity to forest 

and the degree of development in their surroundings. We chose ponds so 

as to cover a range of common land uses in our area. Based upon 

surrounding land use, we classified 34 of our ponds as farm ponds, 28 as 

lawn ponds, 25 as having mixed uses, and 10 as no longer having either 

use (but yet still located in open areas).   

 We tried to distribute our ponds across the County, however the 

practicalities of gaining access to private property and the logistics of 

travel dictated by our budget, meant that our ponds were not randomly 

distributed on the landscape. A random distribution is one assumption in  
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Fig. 6. The size distribution of all the ponds we studied; most 

ponds were less than 5 acres in size.  

Fig. 7. The size distribution of the smaller ponds (< 5 acres) that 

we studied. 

Fig. 5. The location of the ponds we stud-

ied. Three ponds were, technically, located 

in Dutchess County, however they be-

longed to Columbia County farms. 

Ponds are focal points for human influence on the landscape; they proliferated rapidly during the past cen-
tury. Based on our study of Columbia County ponds, this paper will illustrate the connection between ponds 
and the surrounding landscape, and evaluate aspects of their ecological role. The statistics that we present 

are meant to illustrate possible patterns in the data rather than provide rigorous statistical tests or direct 
proof of cause and effect.  
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some statistical tests. The average pond size 

was .9 acres, although most ponds were 

clustered below 1 acre (Fig. 6). The average 

size of the 91 ponds of less than 1 acre in size 

was about 1/4 acre (Fig. 7). Figs. 8, 9, 11 and 

12 illustrate some of the variation in size and 

location found amongst our ponds. 

  We were not able to gather all data 

from all ponds. Hence, in the figures, tables, 

and summaries that follow, the total number of 

ponds included in our analyses will vary 

somewhat depending upon exactly which 

measurements we are considering.  

 

THE BROTH AND THE DREGS 

 One can think of the pond as having 

two aspects: its waters and its sediments. In 

other words, what you swim through and the 

muck you step into. Before considering what lives in or around a pond, let’s consider some of the characteristics 

of a pond’s water and sediments. 

 Aside from the waters draining highly eroded areas of the world, such as the ancient rocks of the 

Adirondacks or Guyanan Shields, few natural waters are very pure. (And even these waters have been tainted 

by human activities.) Most waters are a soup of sorts, albeit an admittedly watery broth. They may contain 

nutrients, toxins and other chemicals which influence the life of resident organisms. Like the sediments that 

collect in the bottom of your soup bowl, the sediments of a pond are mostly the accumulated debris that have 

filtered down out of the water above. 

 Sediments (Fig. 10), like the waters they underlie, may contain various foods, poisons and other 

materials. However, these chemicals are not sealed in the pond’s basin. The surface sediments are easily 

churned up and resuspended in the water by wind, fish, wading cattle or other disturbances. Furthermore, 

sediment-dwelling creatures may consume foods in their mileau and then be consumed by animals living in the 

water. Likewise, a plants’ roots may dig into the mire and carry 

sediment chemicals up into their exposed greenery. It is because of this 

continual potential for interchange that hazardous material remediation 

Fig. 10. An example of a pond core. The 

clear plastic tube was held within a metal 

tube that was lowered into the sediment. It 

was then capped,  returned to the surface, 

and removed from the metal case. 

Fig. 8. Our ponds ranged from constructed garden ponds to... 

Fig. 9.  …. farm ponds and …. 
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often considers removing or sealing aquatic 

sediments. Remediation sometimes also uses 

plants to extract unwanted soil elements.4  

 There are many ways of describing a 

pond’s waters. One could, for example, analyze 

for just about any kind of element or compound. 

However, many of these tests are costly and 

might not tell us much that’s relevant to a 

pond’s life. While we would have liked to do 

more, we measured only three different 

characteristics of each pond’s waters: its pH, its 

temperature, and its dissolved solids.  

 The pH of a pond tells you its acidity. 

As the troubles with acid rain illustrate, pH can 

play an important role in determining what lives 

in a given pond. Acidic vinegar is used as a 

preservative because relatively few creatures 

can live in it. The pH also has a more subtle 

effect. In general, higher pH’s (i.e., less acidic 

ones), tend to liberate more usable nutrients. This is one of the reasons that farmers lime their fields.  Lime, by 

increasing pH, makes soil nutrients more accessible to growing crops. However, too high a pH can also stress 

plants. Pond pH is determined by the interaction of acid inputs and a pond’s buffering capacity. If a pond is 

sitting on a giant Alka-Seltzer tablet, then that next hot chili that falls from the sky won’t be as troubling. 

Calcareous rock is the geological equivalent of the Alka-Seltzer tablet. (Rocks or soils bearing limestone or 

related materials are called “calcareous” because of their calcium content.)5 

 Total dissolved solids (often abbreviated TDS) is a measure of the thickness of a pond’s watery broth. It 

gives a crude index of how much material is dissolved in the water. It doesn’t tell you what that material is, but 

it does give you one way of indexing relative purity. (Of course, life needs minerals and nutrients to survive, so 

don’t equate purity with vitality.) 

 Temperature is one of the great pace makers of nature. The speed of most reactions – living or mineral – 

increase as temperature increases. In our case, because temperature varied relatively little, because it reflected a 

variety of factors (e.g., exposure to sunlight, 

recent weather, presence of springs), and 

because our measurements were very scant 

(one measurement from the pond’s surface), 

our measurements probably have limited 

utility, but we’ll mention them so as to make 

a broader general point about pond ecology.  

 Our information about pond 

sediments was more extensive. First of all, 

we wanted to know about sediment 

phosphorus levels. Phosphorus is thought to 

play a key role in pond ecology because, 

although it is necessary for the growth of 

most plants and algae, it is not usually 

common in nature. This means that it is 

frequently a “limiting nutrient”. Just as water 

might be a limiting nutrient for an explorer in 

a desert, but food a limitation for a sailor 

becalmed on the Great Lakes, so too do 

ecologists often highlight certain nutrients as  

Fig. 11. ...to ponds in more manicured surroundings through... 

Fig.  12.  ...what might be more suitably described as a small lake. 
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the determinants of life’s exuberance in a given environment. In ponds, phosphorus is one such keystone. Thus, 

we tested for phosphorus in our pond sediments. We also collected information on the concentrations of a range 

of other elements, including several heavy metals. 

 Aside from describing a sediment’s chemistry, we also described a couple of its physical qualities, 

namely its minimum depth and its color. Sediment depth was measured by noting the length of the sediment 

column that our corer brought to the surface. Because that corer had a limited capacity and because sediment 

was sometimes lost during collection, we believe our measurements indicated a minimum depth. Organic matter 

(mainly carbon – think charcoal) tends to be black, and it could be indexed by recording the color of our cores. 

We described color as light, medium, and dark with the last reflecting sediments with the deep black of organic 

matter and the first those with the clayey grey of mineral sediments.  

 What do these measurements tell us about the ambience of our ponds? Here comes the data… 

WATER 

pH – the Facilitator: Low pH (high acidity) can render a pond lifeless. While there are natural sources of 

acidity, the recent acidification of northeastern waterbodies is mainly due to acid rain, which, in turn, is caused 

mainly by the sulfur and nitrogen released by fossil fuel burning. However, just because the rain has a pH of, 

say, 4.5, doesn’t mean all waters receiving that rain will have a similar pH. Luckily, there is a range of factors 

that help buffer a pond’s acidity, and some of these are effective in our area. Ponds without such buffers can 

suffer profound ecological effects. 

 Our waters are not very acidic (Fig. 13). A pH of 7.0 indicates neutral waters, and most of our ponds 

were above that value. The average, for 90 ponds, was 7.4. This compares to an average of 5.6 for 56 

Adirondack ponds. Given that 6.0 or lower is the pH of most rainwater, our ponds were likely buffered by 

alkaline soils (or bedrock) or by agricultural liming. Calcium-containing rocks and soils are the most common 

regional geologic buffers and, indeed, the presence of calcium in our pond sediments was significantly related 

to pond pH (Fig. 14). Based upon data in the Columbia County Soil Survey (as summarized by Hudsonia), we 

classified each pond’s underlaying soil type as Calcareous (C),  Slightly Calcareous (SC), or Not Calcareous 

(NC). Appropriately enough, pond sediment calcium was related to this classification of the underlying soil 

(Fig. 15); it was not, however, related to pond use (Fig. 16). This suggests that the pH of our ponds may have 

been determined to a large degree by the underlying minerals, rather than by the surrounding land use.6 

 In conclusion, pH did not seem to reach ecologically poisonous extremes in our ponds. However, pH 
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Fig. 13. The pH of our ponds. Seven is considered neutral; most 

of our ponds were basic (i.e. above 7).  

Fig.14. The relationship between sediment calcium concentra-

tions and water pH. Sediment calcium is determined largely by 

the nature of the geological context.  
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We studied 97 open ponds scattered around the County. These averaged a bit less than 1 acre in area. One 
can partition ponds into a water and sediment portion, the broth and the dregs, so to speak. We’ll begin by 

looking at each of these separately before looking at in-pond life. 



13 

 

also has more subtle effects, and we shall see later that pH was correlated with some aspects of our ponds’ 

ecologies. We are already beginning to see how it is important to consider the pond in its broader context – a 

pond’s bedding, formed by our complex geological history, can affect its chemistry and hence its biology. The 

calcareous rocks that buffered our ponds are the lithified remains of sea organisms from millions of years ago.7 

  

Temperature and The Energy Ambience: Sunlight is the primary cause of water warming in most of our ponds, 

and our temperature readings hint at the fact that pond life tends to receive more solar energy than that in our 

streams. For example, the water temperature of three Hawthorne Valley ponds measured in April was 63 °F, 

whereas that of a stream on the same property, but measured at an even later season (in May of the previous 

year) was about 50 °F. These results are hardly surprising, most of us know that a dip in a stream is chillier than 

one in a pond, however, we may be less aware of what such warmth reflects and what the ramifications are for 

pond life. Warmth comes from sunlight, and sunlight is the main source of energy for photosynthetic organisms 

(and indirectly for the rest of us). It is no coincidence that many ponds turn green with algae during the summer 

while it is a rare (and usually slow) stream that does so. Of course, following the algae come the algae eaters, so 

the sunlit warmth of a pond means more life than just more bathers. 

 Temperature itself affects not only the rate of chemical reactions, but also the oxygen capacity of water. 

Cold water holds more dissolved oxygen then does warm. Thus, a warm, soupy pond can be low in oxygen not 

just because more life is breathing oxygen at a faster rate, but also because the water itself is carrying less 

oxygen. (Green also means more photosynthesis and hence more oxygen production, so the pattern is complex.) 

Streams tend to have more oxygen not only because they’re colder but also because they have the bubbly rapids 

that, just like an aquarium aerator, inject air into the water. Other researchers have studied the stratification of 

temperature and oxygen in ponds during different seasons; the consequences for pond life can be dramatic. Our 

own measurements were too patchy to provide much explicit insight, however they serve to illustrate why the 

fish, insects, and amphibians of ponds are rarely the same species that one finds in the stream nearby. One does 

not, for example, usually find Brook Trout in ponds nor Newts in creeks. 

 

Total Dissolved Solids – the Thickness of the Soup: Total dissolved solids (TDS) measures the total amount of 

materials dissolved in the water; it is a concentration. The rigorous way of measuring this is to evaporate away a 

known quantity of water and measure the amount of material left behind. This is not convenient outside of the 

laboratory, and what we measured was actually electric conductivity. Most dissolved materials carry a charge  
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Fig.16..Calcium sediment compared to surrounding land use. There 

was no indication that calcium was derived predominantly from 

liming on adjacent farmland.  

Fig.15. Calcium content of pond sediments compared to nomi-

nal calcareous class of underlining soils (NC = not calcare-

ous; SC = somewhat calcareous; C= calcareous. This type of 

graph is used for categorical variables—the center point 

above each category indicates the mean value of, in this case, 

sediment calcium. The capped lines above and below each 

point are an estimate of likely variation in the given mean.  
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and so influence the ability of water to conduct electricity. Thus, a measure of a water’s conductance can be 

used to approximate total dissolved solids. Fairly pure water actually can barely conduct electricity (less than 

1µS/cm compared to an average of nearly 200 µS/cm in our ponds). To update the wisdom most of us are taught 

early -  it’s not actually the water and electricity that is so dangerous, it’s the electricity and dissolved salts. 

 Total dissolved solids cannot be immediately equated with good or bad effects – it depends upon what is 

in solution. Some ponds may have high TDS because of dissolved road salt; this can threaten pond life. After 

all, brine has long been used as a preservative because few things can live in it. On the other hand, TDS may 

also be composed of nutrients. During our work in Venezuela, we studied fish in clear waters draining the 

ancient Guyanan Shield (conductivity around 8 µS/cm), and compared the fauna to that of muddy waters 

draining the “recently” raised Andes (dissolved solids more like our ponds). A lot more fish (in terms of weight 

but not, interestingly, in terms of diversity) were found in the muddy, nutrient-rich waters.8 

 

AN ASIDE OF SORTS ON MULTIPLE REGRESSION—PLEASE BEAR WITH US 

 In order to understand a little more about the patterns of TDS in our observations, it’s necessary to 

introduce an analytical technique called multiple linear regression. You may not be all that interested in what’s 

associated with TDS, but we’ll use this technique several times during this report, so taking time now to 

understand it, may help you later. Take a deep breath. 

 Correlations indicate how two or more variables behave in relation to one another. For example, if one 

looked at the relationship of goldfish weight to amount of fish food fed per week, one might expect both 

variables to be positively related, i.e., the more food fed, the heavier the fish. However, you might expect a 

negative relationship between fish weight and number of fish in the tank (because more fish means less food per 

fish). Multiple regression is a way of simultaneously looking at the variation caused by several variables, for 

example, what happens if both amount of food and number of fish vary? It is no secret diviner of relationships, 

rather the process asks, mathematically, what variable is most strongly related to the given response, counts that 

in, and then asks which variable is most strongly related with the resulting leftover variation.  

 There are a variety of caveats, perhaps the most important is that, as we mentioned earlier, correlation 

does not equal cause and effect. For example, suppose that we found a positive correlation between the weight 

of goldfish in an office tank and the number of computers in the office. Clearly, we’d be loopy to propose that 

somehow the computers are nourishing the fish. In reality, more computers may mean more workers and more 

workers might mean a greater chance that somebody will remember to feed the fish. There are other important 

assumptions, some of which our data may not meet. For example, you want each data point, or, in our case, 

each pond to be an independent observation. You would, for example, get a more representative idea of child 

growth rates if you followed 50 children from 50 different families, rather than 50 children from 10 different 

families; it is easy to suppose that children from the same family will, because of genetic and upbringing 

similarities, be more similar to each other than unrelated children. Similarly, some of our ponds were located on 

the same farm or property rather than being independently scattered across the landscape. There were practical 

reasons for this, and ponds on the same property were often quite dissimilar. We believe the multiple regression 

approach is useful for understanding possible patterns in our data. But the results are only suggestions of 

patterns rather than conclusive proof. 

 Below is our first example of a multiple regression result, and we’ll walk through it in more detail than 

later analyses. We asked, mathematically, how does TDS relate to a variety of sediment chemicals? 

  The first step in asking this is to identify the “dependent variable”. This means the variable whose 

behavior we are interested in understanding. It would be goldfish weight in the previous example, and total 

dissolved solids in our current analysis. 

  The computer then goes off and runs through the set of variables we provided and comes back with a 

list of the variables which were most closely correlated with the “dependent variable”. These are called the 

“independent variables” because you are not interested (at least at this stage) in what they are dependent upon. 

In our case, the computer came back to tell us that sediment calcium, magnesium and potassium were prime 

correlates of Total Dissolved Solids.  

We had all these data from only 70 of our ponds. The “% of Variation Explained” (called R2 in statistical 

parlance) is an estimate of how much of the total variation in a sample is explained by the given set of variables. 
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In our case, the estimate is about 53% of all variation. If this value were 100% then one would be able to 

pinpoint TDS by knowing the values of just these three variables; such predictability is very rare in nature. We 

usually start getting excited when % of Variation Explained reaches 15%, but we may just be easily excited. 

Although you could read just the list of factors and learn something, the analysis provides some 

additional information. Ultimately, it provides the values needed for predicting the dependent variable from the 

independent ones. For example, it might tell you that, if you take the number of 5 year-olds in a room and 

multiply that by 5 and then subtract 2 times the number of mothers you would get sound level in decibels. 

While such precision can be very useful, we’ve left that out of the results we’ll be presenting. Instead, we’ve 

only included the “Standardized Coefficient” and the “Significance of the Effect”; here’s what they signify. 

Suppose you are interested in knowing how manuring affects tomato production, and you put varying 

pounds of manure on your garden and count the resulting number of tomatoes. You might find out that you can 

predict the number of tomatoes produced by a row of tomatoes by multiplying the pounds of manure applied by 

10. Tomatoes produced is your independent variable, manure is your 

dependent variable, and  “10” is your coefficient. Now realize that the 

value of that coefficient depends on what units are used to count tomatoes 

and weigh manure. If, for example, manure were weighed in ounces, then 

the coefficient would be 16 times lower; likewise, tallying tomatoes by the 

bushel rather than by the each would also lower the coefficient. To avoid 

that problem, we present “standardized coefficients”, picture these as unit-

free values that you can compare across variables and analyses. They tell 

you the relative magnitude of each independent variable rather than the 

exact value: great for comparison, no use for calculating exact predictions. 

The magnitude of the standard coefficient gives you an idea of how 

dramatic an effect is; the sign of the coefficient tells you whether the 

relationship is direct (i.e., positive, e.g., more food means heavier fish) or 

inverse (i.e., negative, e.g., more fish in tank means lighter fish).  

Finally, the “significance” value (also called the “p-value”) is the estimated likelihood that the effect is 

due to chance alone. These are probabilities. Hence a value of 1 means there is a 100% chance that the observed 

result is due to chance; a value of .05, means there is only a 5% or 5 in 100 chance that the relationship is due to 

chance. By convention, values of .05 or less are generally taken to indicate a variable whose relationship to the 

dependent variable is worth notinge. All the variables in this analysis are highly statistically significant meaning 

that it’s very unlikely we’re just looking at a statistical fluke. A significance value of “<0.001” means that the 

chance of the apparent correlation being simply a random fluke is less than .001 or 1 in 1000. Take these values 

with a grain of salt and recall that they don’t necessarily indicate cause and effect; use them instead to try to 

gauge the relative importance of the given variables. 

Whew! A long, drawn-out explanation about an obscure statistical method for predicting a pond 

characteristic that you didn’t even know you were interested in. Please stick with it. By working through this 

one example, you’ll be much better able to make use of the rest of this report. Here’s another set of results to 

practice on: 

Fig. 17. Tomatoes. You may not need a 

picture of tomatoes, but this page did 

need some color. 

Dependent Variable: Total Dissolved Solids

% of Variation Explained by Model: 53%

Number of Ponds in Analysis: 70

Significant Variable

Standardized 

Coefficient

"Significance" 

of Effect

Sediment Calcium 0.650 <0.001

Sediment Magnesium 0.307 0.002

Sediment Potassium -0.369 <0.001
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But wait! Now, you’re telling me that TDS is related to three other variables. Well, it is. Both these 

relationships can exist in exactly the same way that we could say the sweetness of your tea is directly correlated 

with the concentration of sugar in your tea water, but is also correlated with the number of spoonfuls of sugar 

you place in it. In other words, yes, TDS may be chemically determined largely by those three elements we 

found in the first analysis, however that doesn’t tell you anything about where those elements come from and so 

is, in some ways, trivial. Most of the time, we’ll try to skip over the “trivial” cases, but we wanted to think 

about the different levels of possible cause and effect. 

So take a look at these new results. What do they tell you? This set of variables is only half as good at 

predicting TDS as the first set. However, it’s noticeably more interesting because it might give you hints for 

how to manage ponds so as to influence TDS. Three variables are listed – pond age (it’s a pretty weak 

correlation, notice that the absolute value of the standardized coefficient is the smallest we’ve seen, and the 

probability of insignificance is relatively high), % Developed Area, and Soil Calcareous Class (ranked 1-3, from 

lesser to greater calcareousness). Both the last two correlations seem fairly strong. Finally, notice the sign of the 

variables. If anything, TDS declines with pond age, that means older ponds tend to have lower TDS. At the 

same time, the coefficients of the last two variables are positive, that means TDS increases with developed area 

and soil calcareous class. 

Given the above relations between sediment calcium and TDS, and between sediment calcium and soil 

type, you shouldn’t be surprised to find that TDS is also related to soils. The relationship to development is 

intriguing. Perhaps, it relates to increased erosion, perhaps to water softners, perhaps this is our first statistical 

fluke… without further study, we don’t know, but this relation suggests that, were we particularly interested in 

TDS, we would want to explore its relationship to development in more detail. 

 

In Sum: From an ecological perspective, these results will only be as interesting as the consequences of pH and 

TDS for plant and animal life; we’ll explore that later on. In relation to our initial aims, we’ve already shown 

that aspects of our ponds’ environments may stretch beyond their physical bounds in that they are related to the 

broad geological sweep that produced our soils and perhaps to the land use in the surroundings. It will be 

interesting to see if we can tie any ecology into this picture.  

 Our dissection of TDS above, while ushering in unpleasant memories of high school chemistry, is useful 

for our detective work. In the section that follows, we will explore some of the patterns in sediment chemistry. 

If we find relationships with land use variables, we’ll be able to follow the leads back through the above 

analyses to factors like pH and TDS. On to pond muck! 

In the waters of our ponds, we measured the pH, Total Dissolved Solids (TDS), and Temperature. While such 
measurements are extremely basic, they began to illustrate relations to the landscape. Specifically, pH and 
TDS were tied to the presence of calcareous rock, and TDS may also have been linked to the amount of de-

veloped land in the surroundings. We present a long, drawn-out description of the pseudo-multiple regression 
analysis which we used to explore factors related to TDS. We will repeatedly return to this technique in the 

upcoming pages. 

Dependent Variable: Total Dissolved Solids

% of Variation Explained by Model: 24%

Number of Ponds in Analyses: 76

Significant Variable

Standardized 

Coefficient

"Significance" 

of Effect

Pond Age (Years) -0.165 0.119

% Developed within 400' 0.294 0.005

Soil Calcareous Class (on 1-3 scale) 0.348 0.001



17 

 

SEDIMENTS 
 Sediments are not charismatic, but they are important nonetheless. Some are soupy, some are clayey, 

some are black, some light grey. Some are full of heavy metals, others relatively clean; some are full of 

nutrients like phosphorus, others are relatively barren. In a very real way, sediments are the groundwork of a 

pond’s ecology. Minerals (and other compounds that we didn’t analyze for such as pesticides and complex 

pollutants) accumulate in a pond’s sediments over time. They are brought back into the water by the organisms 

that mine the muck and by disturbances that carry sediments back into the water. Sediments are reservoirs and 

historians. They are a great place to continue exploring the bounds, in time and space, of our ponds. 

 We looked at pond sediments in several different ways: their relative depth, their color, and their 

chemical composition.  

 

Sediment Depth – A Measure of Time and Erosion: Picture a pond over time. Leaves from the surrounding 

forest fall in; insects arrive, grow and die; at some point, perhaps fish arrive and live out their lives; algae may 

turn the water column green before dieing back; and maybe there’s a flood and mud-laden waters from a nearby 

creek wash in. All these materials will, when times are tranquil, sink to the bottom of the pond and accumulate. 

This scenario hints at four of the factors that probably help determine sediment depth – pond age, pond vitality, 

the importation of debris from elsewhere, and the amount of water in the pond (to understand this last factor, 

picture how much sweet glop you’d expect in the bottom of a small tea/coffee/hot chocolate cup vs. a large 

one). Can we read any of this story in the sediment depth of our ponds? 

 First a caution – our measure of sediment depth was very rough. We took sediment samples using the 

same principle we all learn as children: when you stick a straw into your drink and plug the open end with your 

finger, you can pull out quite a nice sample of your soda. Our “straw” was a metal tube, and, while its “finger 

end” was not above the water, it had a handy little valve that closed off that end once we had embedded the tip 

in the mire. We only got as much sediment as our little device captured when it buried itself in the sediments 

after falling through the water (needless to say, we had it on a string). Because we did not attempt to push our 

device to the bottom of the sediments and because sediments sometimes leaked out as we pulled our device to 

the surface (remember dribbling milkshake down your shirt when the straw didn’t quite make it to your mouth 

on time?), our measure of sediment depth is only a minimum. For the sediment analyses we report later, we 

only used the top 2.5 inches of sediment, both to avoid confusion that might come from including sediments of 

different depths and because the surface layer is the portion most likely to be relevant to a pond’s biota. 

 The depth of our ponds’ sediments was indeed related to pond age (Fig. 18). So think of the years you’re 

plumbing next time you stick your foot deep into pond ooze. 

The leveling off of apparent sediment depth may be related to 

the technical issue mentioned above – there was a limit on 

how deep our device buried itself and on how much sediment 

we could pull to the surface. 

 What about the other three factors that we suggested 

might influence sediment depth, i.e., pond depth, sediment 

inflow, and pond life? It’s time for another multiple 

regression. Luckily, we had a direct measure of pond depth, 

however for sediment inflow and pond life, we had to use 

some possibly suspect substitutes. The closest we came to 

directly measuring sediment inflow was TDS – after all that is 

an estimate of total solids in solution which may have some 

vague relationship with sediment inflow. For an index of in-

water life, I used our measure of total algal and plant pigments 

in solution. Not surprisingly, given that it is probably a very 

inadequate measure of sediment in-flow, our single 

measurement of TDS was not statistically related to sediment  
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Fig. 18. The depth of pond sediment in relation to pond 

age; older ponds tended to have deeper sediments. 
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depth. However, water depth and algal pigments, along with pond age were all relevant (don’t worry that pond 

age entered twice, you know the pattern from the above graphic; these permutations are, again, necessary for 

statistical purposes). All’s well, right? Wrong. Look more carefully at the model details below, what result does 

not agree with our evidently simplistic attempt to explain pond sediment dynamics? 

 

Perhaps Fig. 19 will help. 

Look again at the sign of the coefficient associated with Water Depth; it’s negative. As that sign and the above 

graph suggest, sediment depth decreases as water depth increases. That’s not the relationship we’d predict if 

sediment depth were being determined in part by material growing in and then filtering down out of the water 

column above. Figure 20 might help explain this paradox. 

 In words, older ponds tend to be shallower than younger ponds. There may be several reasons for this, 

including distinct, historical differences in the motivations of pond digging (e.g., currently dug in part as deep 

swimming ponds, previously intended in part as shallow cattle watering holes). Another contributing factor may 

be the apparent life cycle of ponds – almost all ponds gradually fill up with sediments over time. Although pond 

age was already in our model, apparently water depth added some additional detail to our predictions of 

sediment depth, perhaps because we had not fully accounted for aspects of pond aging. 

Dependent Variable: Sediment Depth

% of Variation Explained by Model: 26%

Number of Ponds in Analyses: 70

Significant Variable

Standardized 

Coefficient

"Significance" 

of Effect

Pond Age -0.287 0.155

Pond Age (Square Root) 0.431 0.035

Water Depth -0.346 0.003

Total Dissolved Pigments 0.222 0.044
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Fig. 19. The relation between pond depth and sediment depth—deeper 

ponds had shallower sediments! 

Fig.20.Water depth versus pond age. Ponds tend to fill in as 

the age and older ponds may not have been dug as deep as 

modern ponds.  
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 If you carry something away from this short foray into pond sediment dynamics, it should be the 

mutability of ponds over time. The relationship that we have already documented between pond age and 

sediment depth, if extended over centuries, has the logical conclusion of a shallow, sediment-filled pond that 

eventually even reverts to dry land. Some have even proposed that the valley bottoms where much of our 

agriculture occurs are the ancient remnants of beaver ponds. While that might be an exaggeration, there is no 

doubt that ponds have a life in time. Not only do their lives reach beyond their shores they reach backwards and 

forwards to changes over time. 

 

Sediment Color – A Slow, Wet Fire: Ok, so how many of you, having stepped into that pond ooze, quickly 

retreat to shore to examine the color of the few globs still stuck between your toes? Studying sediment color 

sounds esoteric, but it can actually help us learn more about our ponds. The main reason that it is revealing is 

that one can make useful generalizations from pond color. All else being equal, pond bottoms around here often 

start out the grayish color of clay. Over time, mud and organic material accumulates and darkens the sediments. 

Very black sediment indicates the presence of “organic matter” (a scientists way of saying dead things); 

basically, the blackness is charcoal, albeit the charcoal produced by the slow flame of biological decomposition. 

Given this interpretation of sediment coloration, we may be able to learn something about the life of our ponds. 

 We measured color categorically as light, medium, and dark (Fig. 21). No doubt there are gradients but 

the end points (grey and black) were clear enough, and anything that didn’t qualify for those categories was 

called “medium”. We’ll explore two ramifications of our above proposal – young ponds should have lighter 

sediments, and ponds in landscapes producing lots of organic matter run off should have the blackest sediments. 

Figures 22 and 23 appear to support both of these conjectures. 

 That the mineral sediments of new ponds might be greyer (the pattern is not quite statistically 

significant) should not come as a surprise. The strong (and statistically significant) relationship with plowed 

land might be more surprising. These data might suggest that plowing land increases the loss of its organic 

matter. This would assume that most of the organic matter comes in as erosion, rather than through the 

accumulation of in-pond biological production. In fact, the loss of organic matter from plowed fields is a well-

recognized issue in agricultural sciences. Does this increased organic matter affect the organisms that live in our 

pond? Are we beginning to forge more links between pond and surroundings? We shall see. 

 This is a good spot for another caveat. The statistics which we present are selective. I did not show you, 

for example, the rather dull plots of soil color vs. land in lawn or development or pasture. Indeed, we looked at 

these to make sure that the pattern with plowed land was, in fact, something distinct. Likewise, in our earlier 

multiple regressions, we did not tell you which factors entered into our tests, but did not turn out to be   

Fig. 21. Sediment color from our ponds. The black streaks at left are traces of organic matter that have accumulated in the upper 

portion of the sediment. The middle picture shows a more common sediment color—traces of organic matter darkening mixed with a 

more mineral grey (as is also apparent in the lower portion of the sediment at left). On the right, the tip of a core into a largely min-

eral sediment with patches of clay-like grey. These sediments would have been ranked as dark, medium and light respectively. 



20 

 

significant. We’ll plead conciseness –this text would become even duller and denser were it to include a listing 

of all dead ends. However, you could also accuse us of stacking the deck, only presenting those results that fit 

our case. The appendix contains the full statistical details of the different analyses that are summarized in the 

text. Please do look at it if you want to getter a better idea of how this paper was constructed. Otherwise, we 

will only say that yes, we did do a fair bit of fishing for patterns, but we have tried to be honest and include all 

those relationships which appeared strong, whether or not we could explain them. 

 

Sediment Content – Distilling our Wastes: Imagine that you want to understand something about the lives of 

people that live in a single faraway city by following their diets. You interview many people and get a long list 

of all the foods eaten. You describe each person based upon the foods they eat, how many pounds of mangos, 

marshmallows and what have you. You end up with a huge data set and then what? One approach is to try to 

categorize the data based upon diets, i.e., upon clusters of foods that tend to appear together. For example, one 

might find that there is a group of people who tend to consume both rice and beans. Proceeding in this way, you 

might come up with distinct food clusters that will help you identify patterns that subsequent analysis including, 

for example, ethnicity, might elucidate. This scenario illustrates the motivation for a technique, called principal 

component analyses, that we will shortly apply to our sediment data, but first, to quote Kai Ryssdall, “let’s do 

the numbers”. They are not terribly happy ones. 

 As settling ponds for what rains down upon them and runs off of the surrounding lands into them, ponds 

accumulate the dirt that falls from the sky or washes from our activities. Much of this dirt ends up in a pond’s 

sediments. A certain amount of such accumulation is natural and so, as we look at the concentrations of various 

heavy metals and other elements in pond sediments, we need a reference point. What concentrations are natural, 

which unnatural, which might cause biological problems? 

 Little work has been done on ponds, so we must turn to lake sediments. Table 1 is a summary assembled 

by the state of Wisconsin using information from a variety of sources. It shows the biologically-relevant 

concentrations for a limited set of elements. We used these data to evaluate the potential ecological importance 

of the concentrations we observed in our pond sediments.9 

 Table 1 can be used to classify the concentrations of any of the listed elements into four classes: values 

unlikely to cause environmental effects, values where an effect might first occur, values where such an effect 

Fig. 22. Sediment color in comparison with pond age. Older ponds 

had darker sediments, probably because of the accumulation of 

organic matter (i.e., dead stuff). 

Fig.  23. Sediment color in relation to amount of plowed land 

in a pond’s surroundings. Plowing in adjacent land may in-

crease organic matter run-off into ponds. 
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has medium likelihood, and values 

where an effect is probable. Figure 

24 indicates that for some of the 

elements, (e.g., iron, lead and 

manganese) concentrations in many 

ponds may have been high enough to 

have environmental effects, while 

other elements rarely showed high 

concentrations. With antimony, for 

example, all 86 ponds showed 

minimal signs of contamination, 

while, for lead, 71 ponds showed 

medium or high levels of 

contamination. Although not shown  

in Table 1 or Figure 24, sediment 

phosphorus exceeded presumed 

background levels in 95% of the ponds. 

 If green indicates 

“comfortable” background levels, then 

multi-colored Figure 24 is cause for  

Table 1.  A table showing the concentrations in lake sediments at which various ele-

ments become of environmental concern. TEC = Threshold Effect Concentration; 

MEC = Midpoint Effect Concentration; PEC = Probable Effect Concentration. Taken 

directly from a Wisconsin DNR 2003 publication. 9 

Fig. 24. A set of histograms indicating the number of ponds (86 total) in each Sediment Contamination Class for several elements of 

environmental relevance. Most classifications are based upon the data in table 2; additional published information  estimating back-

ground levels was used to calculate a below/above categorization level for several additional elements (those with only two catego-

ries in their histograms). Contamination level increases from 1-4 (green –red); class 1 (green) is considered non-contaminated. 
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concern. Most of the elements listed showed evidence of unnatural enrichment. In some cases, that enrichment 

reached levels believed likely to threaten biological health. Later we’ll see if there actually is any evidence in 

our data for such effects. However, before doing that lets apply our principal component analysis to these data 

in an effort to look for patterns in the numbers. If, as we have suggested, the chemistry of pond sediments 

reflects input from outside, then there should be some evidence of such patterns in our data. 

 A principal component is, essentially, a set of variables that co-vary. Each component is thought to 

identify one pattern of covariation in the data (i.e., one diet, to continue our gastronomic example). A principal 

component is expressed as a series of coefficients indicating the contribution of each individual factor to the 

given component (or each food to the diet). As such, the general “nature” of each component can usually be 

identified by looking at the factors most heavily influencing it. While the mathematics is somewhat complex, 

inspecting Table 2 may give you a ‘feel’ for what such components represent. We will use these components in 

some of our subsequent analyses exploring the relations of biological variables to landscape and sediments. 

Therefore understanding what they represent will help you understand some of what comes later.  

 Our principal component analysis identified 7 clusters of like-behaving “components”. To return to our 

initial dietary example, the elements would be represented by the different foods, while the components would 

1 2 3 4 5 6 7
Aluminium 0.925 0.104 0.094 -0.066 -0.261 -0.020 -0.001

Antimony 0.882 -0.318 -0.110 0.082 0.206 -0.093 -0.032

Arsenic 0.087 0.318 0.296 -0.115 0.646 -0.099 0.142

Barium 0.442 0.509 0.377 0.214 0.042 -0.228 0.312

Beryllium 0.800 0.154 0.293 0.019 -0.200 -0.234 0.087

Boron 0.746 0.025 0.172 0.118 0.121 0.367 -0.163

Cadmium 0.071 -0.026 -0.342 0.323 0.027 0.259 -0.297

Calcium -0.162 0.571 -0.611 0.261 0.181 0.058 0.185

Chromium 0.933 0.111 0.049 -0.130 -0.195 0.005 0.031

Cobalt 0.797 -0.393 -0.097 -0.078 0.254 0.023 0.048

Copper 0.247 0.383 0.077 -0.322 0.279 0.292 0.260

Iron 0.855 -0.349 -0.119 0.095 0.234 -0.102 -0.028

Lead 0.956 -0.002 0.054 -0.019 -0.062 0.037 -0.118

Lithium 0.870 -0.025 -0.151 0.086 -0.137 -0.179 0.005

Magnesium 0.562 -0.179 -0.509 -0.153 0.141 0.081 0.158

Manganese 0.394 -0.268 0.268 0.523 0.334 0.053 0.147

Molybdenum -0.126 0.338 0.156 -0.374 0.459 -0.141 -0.431

Nickel 0.763 -0.274 -0.188 -0.313 0.115 0.033 0.096

Phosphorus 0.804 -0.285 -0.170 0.125 0.238 -0.191 -0.018

Potassium 0.730 0.517 0.139 0.071 -0.204 -0.013 0.034

Selenium -0.190 -0.164 0.540 0.461 0.092 0.446 0.143

Sodium 0.610 0.223 -0.161 0.266 -0.255 0.084 -0.205

Strontium 0.066 0.619 -0.523 0.348 0.081 -0.049 0.147

Sulfur -0.024 0.610 0.009 0.155 0.242 -0.113 -0.467

Titanium 0.297 0.329 -0.159 -0.382 -0.039 0.521 0.179

Vanadium 0.763 0.415 0.212 -0.141 -0.155 -0.034 0.012

Zinc 0.603 0.038 0.121 -0.013 -0.015 0.309 -0.386

1 = Broad enrichment

2 = Ample Barium, Strontium, Calcium, Potassium & Sulfur

3 = Lack of Calcium, Magnesium & Strontium

4 = Elevated Manganese?

5 = Elevated Arsenic

6 = Elevated Selenium, Titanium

7 = Lack of Sulfur, Molybdenum, Cadmium, and Zinc

%variability

accounted for 39.7 11.2 7.5 5.7 5.5 4.1 4.0

Sediment Components

Table 2. A summary of the principal components identified in our sediment elemental data. Seven components were identified. The 

green tints indicate medium (light green) and strong (dark green) positive contributions to each component; reddish tints indicate 

medium (pink) and strong (dark red) negative contributions. Below the list of elements, is our summary of the components. Along 

with  the amount of total variability accounted for by each component.  
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represent the seven different diets that we might try to associate with ethnicity. The values below each 

component and across from each element (for example, the .925 that is to the right of aluminium and below 

component number 1) are the component loadings. You can think of these as the weights of foods that went into 

each diet. These values vary from –1 to +1 with negative numbers denoting a relative absence of a given 

component (e.g., pork’s absence from the Kosher diet). 

 In Table 2, we have tried to summarize some of the key characteristics of each component. “% 

variability accounted for” shows how much of total variation was accounted for by the given component. 

Imagine, for example, the power that identifying vegetarians vs. non-vegetarians would have in explaining our 

regional diets; in contrast, realizing that some people have vinegar on their spinach would be substantially less 

powerful and would account for less of the total variation. 

 In the same way that we explored the correlates with Total Dissolved Solids, we explored the relation of 

each sediment component to various habitat and pond characteristics, and we summarize those results below. 

 

Sediment Component 1– By Land & Air?: The first component was powerful – it was associated with elevated 

levels of a broad range of elements, including most heavy metals. Yet, our correlates while statistically 

significant, explained less that a quarter of the variation. Here’s the multiple regression report: 

Not surprisingly, perhaps, the number of buildings (houses, barns, workshops, offices, etc.) within 400’ of the 

ponds was positively correlated with this component (Fig. 25). If this component does represent the general 

effluent of society and if the number of buildings indexes the intensity of human use, then the correlation seems 

reasonable. While the relationship between this sediment component and buildings seems apparent in the graph 

and seems interpretable, we should caution that aside from the previously-mentioned lack of independence in 

our data, relationships in which the values of at least one variable are clustered to one side (i.e., the 

predominance of ponds without surrounding structures in Fig. 25) run the risk of being misinterpreted. Notice 

how much power the relatively few ponds surrounded by four or more houses have in leading the eye (and the 

statistics) to assume a certain relationship. Such correlations are thought provoking and worth mentioning, they 

are not however conclusive.  

 The negative relationship with pH (fig. 26) may relate to the tendency, mentioned earlier in relation to 

plant nutrients, for elements to be more closely bound to the sediments at acidic pH’s. This could result in lower 

leaching or dissolution of sediment elements and hence higher sediment elemental values at lower pH’s. We 

can’t immediately explain the relationship to sediment depth (Fig. 27). As we mentioned earlier, sediment depth 

was linked to a variety of other factors including pond age and water depth.  

 Part of the unexplained variation in this component, may relate to the fact that not all (or even, perhaps, 

most) of these elements originate from neighboring ground sources. The elements that contribute strongly to 

this component are at least partially supplied through air-borne particles. To a large degree, they are impurities 

present in fossil fuels. They are liberated upon burning and spread through the air in smoke. We are downwind 

from much of the country’s industrial production, and it shouldn’t be surprising that this is evidenced at the 

bottoms of our “collecting basins”. What determines the collecting propensity of a pond probably has to do with 

location relative to weather systems and nature of each pond’s watershed, factors beyond our ken.10 

 

Sediment Component 2– The basics: This component seemed to follow pond alkalinity. It was highest in 

Dependent Variable: First Sediment Component

% of Variation Explained by Model: 21%

Number of Ponds in Analyses: 66

Significant Variable

Standardized 

Coefficient

"Significance" 

of Effect

No. of Nearby Houses 0.260 0.027

pH -0.294 0.012

Sediment Depth -0.341 0.004
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sediments with relatively high calcium and magnesium, and its value rose with pH. 

 Multiple regression indicated that as pH increased (became less acidic), the second sediment component 

increased (Fig. 28); it also increased as distance to nearest forest decreased. The first observation is not difficult 

to understand – this second component represents some of the elements typical of sediments (and soils) that are 

non-acidic; the relationship to forests may have to do with the elements introduced by leaf fall (Fig. 29) . The 

leaves of some trees, such as basswood, are rich in calcium and potassium, and so nearby forests might help 

boost the concentrations of these elements in a pond. However, we would need to look at leaf fall and leaf 

chemistry, if we wanted to explore that relationship further. 

 

Sediment Components 3 through 7–The Fringe Elements The remaining sediment components have less 

predictive value and, aside from component 5 which appeared to be associated with elevated arsenic, may be 

more difficult to summarize. Components 5 and 7 both increased as house proximity increased, and component 

6 increases with amount of developed area nearby. It would be interesting to compare arsenic levels with 

proximity to former orchards given the historical use of arsenic as an apple fungicide, but we haven’t yet 

collected those data. All seven sediment components showed higher levels in residential than agricultural ponds, 

but the pattern had only marginal statistical significance.  

 

Phosphorus–How Green is my Pond  Before finishing our consideration of pond sediments, there is one element 

that we wish to consider individually because of its potential ecological importance – phosphorus. Phosphorus, 

at least at the levels that we encountered, is not a direct toxin. Rather, it is a fertilizer. We say not a “direct 

toxin” because, while it may not poison organisms directly, some organisms are adapted to living in low 

nutrient conditions, and soon disappear when increased nutrients boost their competition. 

 Baron Justus von Liebig is a worthwhile character to introduce into our narrative at this point. A German 

paint-mixer’s son born in1803, his career typifies science’s mixed blessings. Liebig’s Law, like all “laws” in 

ecology, is a useful generalization rather than a law. It stated that the growth of plants was limited by the 
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Fig.  25. The relationship between the number of buildings within 400’ 

of a given pond and that pond’s value on the first sediment component. 

This components tends to increase with increasing number of nearby 

buildings, however notice how many samples are clustered along the 

left of the graph, allowing relatively few ponds to determine the appar-

ent pattern. We have left the linear fit out of this diagram, so that you 

can better appreciate the effect of the extreme points. 
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nutrient that was in shortest supply. Although this statement is somewhat circular (because “shortest supply” 

must be calculated in a way relevant to the plant, this law almost translates into “plant growth is limited by that 

nutrient which limits the growth of plants”), it is a useful thinking aid. It focuses attention on the idea that a 

particular nutrient might limit growth, and that, once that nutrient is satisfied, another might become the 

limiting factor. Liebig was one of biochemistry’s founders, and he applied much of what he learned to 

agriculture. He pioneered the idea that nitrogen fertilizer could boost plant growth and promulgated the concept 

that synthetic fertilizers might work just as well as 

natural ones. 

 Liebig deserves a cameo because his “law” and 

the industrialization of fertilizer both play a part in 

understanding pond ecology. Observers studying the 

nutrition of pond plants have found that phosphorus is 

often a limiting nutrient in the sense of Liebig’s Law. 

The addition of phosphorus to a pond often results in a 

bloom of growth. That addition can come through 

Liebig’s legacy, i.e., synthetic fertilizer applied to 

neighboring land (the “P” of NPK fertilizer is 

phosphorus); but it frequently comes from less 

conscious additions such as contamination by sewage or 

phosphorus-containing soaps. In any case, phosphorus 

addition to waterways is now recognized as one of the 

main causes of eutrophication.  

 Eutrophication refers to the process where by a 

pond becomes increasingly enriched in nutrients and, as 

a result, the community structure of pond life is altered. A pond clogged with green algae due to phosphorus run

-off is one example. Eutrophication may happen very slowly due to natural processes associated with pond 

aging, but the rapid eutrophication of ponds and other waterbodies due to human activity is thought to be one of 

our major impacts on aquatic ecosystems.11 

 There are various ways of measuring degree of eutrophication. Some are based on trying to index the  
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Fig. 29. A Columbia County woodland pool (not one included 

in this study) collects autumn leaf fall from the nearby forest. 
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flush of life that is caused by enhanced fertilization; others try to measure the chemistry of fertilization directly. 

At this point in our story, we will look at sediment phosphorus. Although the phosphorus in the water may have 

a more direct impact on pond life, phosphorus in the sediment may be the sleeping giant – the phosphorus 

present in the top layers of sediment is usually much higher than what is in the water and it can be returned to 

the water by diffusion, nutrient mining by organisms, and sediment disturbance. Phosphorus in-flow could be 

removed from a pond, and eutrophication might continue to occur because of the buried phosphorus stores. The 

phosphorus in more than 95% of our ponds appeared to be above background levels and so might be causing 

some ecological effects. Is there any evidence of this scenario in our data? Here’s another regression analysis: 

We’ve included pH and sediment depth in the 

analysis not because we understand why these 

patterns occur or particularly want to discuss them. 

Rather, before we look for a relationship with land 

use, it’s useful to get rid of as much “extraneous 

noise” as possible, although there’s always the risk 

of throwing the baby out with the bath water (e.g., 

what if some byproduct of development affected 

pond phosphorus by altering pond pH?). Inspect 

the results above – the only land use variable that 

significantly predicted pond sediment phosphorus 

was % developed area within 100’ of the pond 

edge (fig. 30). This fits with the patterns of 

contamination recognized by others. Interestingly, 

adjacent agricultural habitats appeared to have no 

such effect.  

 The correlation with development was not 

particularly strong. For example, there were many 

ponds that had no development within 100’ but 

which nonetheless showed relatively high levels of 

phosphorus. However, high development was 

associated with higher than average phosphorus 

levels. The same caution that we mentioned in 

relation to house number and our first sediment 

component again applies here because relatively 

few ponds were surrounded by 20% or more developed land. 

 In sum, we have looked at the physical and chemical aspects of our ponds, and highlighted some 

apparent connections to the surrounding landscape. Ponds are not indoor swimming pools isolated from their 

surroundings, but rather aquatic patches of landscape that extend out in many directions. In the sections that 

follow, we finally move on to pond life – how do the plants and beasts we find in our ponds reflect this linkage 

to the greater environment? Are they too strings that connect sky and earth, water and dry land? 

 

Fig.  30. Amount of sediment phosphorus and % of developed land 

within 100’ of a given pond. There was a tendency for phosphorus 

concentration to increase with developed land although note the 

wide range of phosphorus values associated with 0% developed. 
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Part II: Pond Life 
Pond life illustrates a pond’s connection to its surroundings in two ways: first, as we have mentioned, because 

what happens around a pond can trickle into a pond and affect the organisms living in it; and, second, because 

during different stages of their lives, some pond organisms move to and from ponds, and so their survival 

requires good upland, as well as lowland, habitats. As examples of the latter, some frogs and salamanders only 

come to ponds for one brief, seasonal orgy, before returning to surrounding land; dragonflies stalk mosquitos 

and blackflies far and wide before returning to their in-pond nurseries; and the caterpillars of some wetland 

butterflies may require sedges, but the adults can benefit from the nectar of upland flowers. Because of these 

forays, what’s happening on the surrounding land can directly determine the health of these organisms.12 

 Our section on pond life will introduce you to some of the creatures that live in our ponds. Ponds are 

fascinating zoological and botanical ‘gardens’. We will touch upon some of the concepts that we have already 

introduced. We’ll meet eutrophication again. This time, instead of looking for possible contributing factors to 

pond greening, we’ll try to index the greening itself. In considering the abundance and diversity of plants, we’ll 

visit Baron von Liebig again and ask what nutrients might be affecting their communities. And, in considering 

the role of landscape in determining the abundance of different animals, you’ll get a chance to see even more of 

those little mathematical equations that are no more 

than very rough sketches of the patterns that may 

exist in the underlying tapestry of nature.  

 

A METHODOLOGICAL ASIDE  

 Conventional scientific papers put all of their 

methods at the beginning. That makes it easy to refer 

to them when necessary and easy to skip when not. 

We’ve put our methodological details in the 

appendix, but there are certain methods that we really 

think you should know about because they are central 

to much of the work presented here and because they 

help you begin to see the ponds in the same way we 

do. One of those methods is habitat analysis using 

“remote sensing”. “Remote sensing” does not mean 

E.S.P., instead it refers to the use of satellite and 

aerial photographs to describe characteristics of the 

landscape. As anybody who has flown knows, seeing 

the land from above brings whole new insights into 

what’s happening on the ground. As anybody that has 

flown also knows, there often comes a point at which 

a visit back to ground level is key to understanding 

mysterious patterns. Good remote sensing work uses 

both the remote image and what is called “ground-

truthing”, i.e., visits to those places that you’ve 

described from the photographs in order to insure 

that, for example, the dark swaths that one has been 

calling evergreen forest from the air are not really 

broccoli patches. In order to better understand  

Pond sediments accumulate the various materials that enter them as direct deposition in rain or dust, and as 
run-off from the surrounding land. Sediment depth reflects pond age, while sediment color appears related to 
the surrounding land use. The sediments of our ponds were high in some heavy metals. This contamination 

was partially correlated with surrounding land use and may also have derived from aerial deposition.  

■ Percent Wooded

■ Percent Lawn

■ Percent Plowed

■ Percent Hay Field

■ Percent Pasture

■ Percent Water

■ Percent Developed

Land Use Descriptors Derived from Aerial Photographs

Coverage Estimates (Measured Twice - 

within 100' and within 400' of the pond):

■ Number of Buildings within 400'

■ Distance to Nearest Building

■ Distance to Nearest Forest

■ Distance to Nearest Road

■ Total Length of Roadway within 400'

Table 3. A list of the landscape characteristics that we measured 

using aerial photography and ground-truthing. The 100’ and 400’ 

rings were chosen based upon published data looking at the inter-

action of amphibians and land use; the 100’ ring indicates immedi-

ate surrounding conditions, while the 400’ ring gives a broader 

view of general context. These two measurements are often closely 

correlated for a given characteristic. 
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what was happening in our ponds, we did the same thing: we combined inspection of aerial photographs with on

-the-ground visits to insure we were interpreting things correctly. 

 Table 3 shows the landscape variables we calculated and the figures that follow show a couple of 

examples so that you can get a feel for what these variables really meant. Don’t get hooked, there’s something 

powerfully omniscient about these aerial views! 

  Basically, for each cover type, we calculated, by eye, the proportion of a 100’ and 400’ fringe around 

each pond that was occupied by the given cover. For example, in Fig. 31, we would have said that within 100’ 

there was about 30% Woods, 35% Hayfield, 20% Developed and 15% Lawn, while within 400’ there was 

something like 50% Woods, 10% Pasture, 10% Woods, 15% Lawn and 15% Developed. We did several line 

measurements on the aerial photos – distance to nearest road, forest and house, plus total length of roadway 

within 400’ (Fig. 32). Bank characteristics and approximate amount of wetland in the surroundings of each 

pond were done based on experience during our visits to each pond. These are all rough measures, but done 

across 90 ponds and with an individual knowledge of each pond, we think they provide a useful summary of 

general pond context—.  

 

ALGAE 

Chlorophyll—The Very Nature of Green: People don’t like green ponds. We are accustomed to bathing in clear 

water, not pea soup. Much of this is aesthetic, although a few types of algal blooms can be toxic. That said, 

some greening is probably as natural as growing old. Our life-spans are very short relative to the timing of some 

ecological processes. One of these processes is the life of a pond. Ponds are rarely stable in time. They are 

“born”, grow old, and “die”. “Birth” may occur for natural reasons (e.g., puddling in rocky basins, 

empoundment by beaver or other natural happenings) or because humans build them. In either case, they grow 

old. The aging of a pond involves its being in-filled and fertilized by the accumulation of debris and nutrients. 

Again, this may be a natural process during which actions such as leaf-fall, aquatic plant growth, and the arrival 

of natural creek-born sediments slowly fill the pond in, or it may be the relatively rapid result of human action 

which accelerates sedimentation and fertilization (here and below, “fertilization” refers to increasing available 

nutrients; it may or may not be associated with intentional fertilization of lawns, crops, or ponds). The arrival of 

nutrients from outside of a pond will affect plant growth within the pond, and the more plant growth within the 

pond, the more nutrients are captured and deposited by plant life, further speeding up the aging process. Figs. 33

B
A

C

Fig.  32. An illustration of some of the landscape measure-

ments we took using aerial photographs. Buffer rings are at 

100’ and 400’ from the pond. Green arrows indicate larger 

buildings falling within 400’ of the pond. A = distance to near-

est house, B = distance to nearest forest, and C = distance to 

nearest road.  

Fig.  31.  An illustration of the land use quantification done 

around each pond at a distance of 100’ and 400’. The catego-

ries used were lawn, developed, woods, pasture, hayfield, 

plowed cropland, and water. Percentages occupied by each 

land use were estimated in donuts extending 100’ and 400’ 

from the pond.  
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-41 show ponds of varying shades of green because of different types of algal and plant growth.13 

 The aging process can be dramatically accelerated by human action. For those who might say, ‘ah, but 

you just said it’s a natural process, so what’s the fuss?’, picture what would happen if some newly released 

chemical suddenly caused humans to age 100 times faster than normal – we would soon have a very decrepit 

and non-functional adult population in many places. While ponds obviously don’t breed and so we can’t push 

this analogy too far, they do harbour different life forms during different stages of their existence. Some 

organisms do just fine in eutrophied ponds, but many are adapted to the earlier stages of a pond’s existence. Rid 

the landscape of a proportion of relatively clean, middle-aged ponds, bordered by a wide strip of wet meadow, 

and you rid the landscape of all the organisms who became adapted to live in such areas. For example, a little 

noticed consequence of our re-formation of ponds has been the decline of the muskrat. Just its name implies it’s 

as common as the fleas on a dog’s back. However, this rodent, somewhat smaller than a groundhog and, 

taxonomically speaking, a giant vole, has been steadily disappearing from our countryside. One possible cause 

for the decline is that the marshes it favors are not favored by humans who prefer dryland or distinct ponds. 

 If we go grey with age, ponds go green (at least in many places and within limits; natural aging will 

rarely lead to the dramatic overfertilization typical of some human effects). Why green? What turns your pond 

green is often algae. “Algae” is a grab-bag term for an array of plant-like organisms that do not quite have the 

structural complexity of true plants, even though some, such as the ocean kelps, bear a strong resemblance. 

Some of what we call algae are actually bacteria, while others live inside of microscopic animals, others in 

lichen, and still others branch out on their own. For our purposes, we’ll treat them as a group, gauging their 

abundance by green-ness but not looking at any taxonomic diversity. What makes algae, and most plants, green 

is chlorophyll (it is also what allows them to trap sunlight and use it to create sugars). We took water samples 

from our pond and analyzed them for the content of chlorophyll and phaeopigments (Fig. 42). Phaeopigments 

are mostly rotten chlorophyll. While the presence of chlorophyll itself in a sample indicates the occurrence of 

living, chlorophyll-bearing organisms such as algae, phaeopigments indicate the past presence of such 

organisms. A pond which experienced an algal bloom and bust some time previous to sampling might have 

relatively little chlorophyll in its waters but quite a bit of phaeopigment. 

 Because algal abundance is thought to be a prime marker of eutrophication, a biologist named Carlson 

came up with a special number called “The Trophic State Index” (abbreviated TSI) which serves to give ponds 

a grade in terms of their relative state of eutrophication. TSI is calculated based on chlorophyll concentration 

and, since so many other researchers have used it, it gives us a handy number for comparing our findings to 

those of other biologists.14 

 First, let’s just ask how our ponds stacked up in comparison to this generalized scale (Table 4). The 

value of the Trophic State Index increases with increasing 

nutrient enrichment. Other researchers, looking at a 

variety of characteristics, have come up with several 

classes of eutrophication. We’ve used six classes. Ponds in  

the first class are often termed “Oligotrophic” and are 

clear and nutrient poor;  ponds in class 7 are 

“Hypereutrophic”, excessively rich in nutrients and tend to 

be rich in algae and/or plants.  Beginning around the fourth 

TSI class, ponds are reported to show definite signs of 

eutrophication (e.g., smells, algal blooms, reduced fish 

diversity). Almost 50% of the ponds we studied ranked as 

eutrophied (Table 4). In other words, nearly half were 

likely showing profound ecological effects due to 

excessive nutrient in-flow. Given that the vast majority of 

our ponds are relatively young, this degree of 

eutrophication cannot be attributed to natural processes. 

To put this in context, the degree of eutrophication in 

Columbia County ponds appeared to fall between that  

Fig. 33. Crystal-clear waters are often our ideal. However, 

they are rarely natural in our setting. They are usually only 

found in recently-dug ponds such as this one or in ponds 

treated with algaecides.  While herbivorous fish can control 

greening, they usually are evidenced by stirred up waters 

with a high sediment load.  
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Fig. 34  This seep-fed cattle watering hole shows both float-

ing algae and submerged filamentous growth. Surrounded on 

three sides by forest and probably too small for fish, this 

pond supported high densities of Wood Frog and Salaman-

der eggs many of which, judging by subsequent visits, 

hatched and continued to develop.  

Fig. 35  A thick, frothy layer of algae, much of which 

may be dead and dying at a pig pond. Because pigs like 

water, they are often housed near ponds which can 

quickly become nutrient rich.  Small isolated ponds such 

as this one may serve as nutrient traps, however locat-

ing pigs near running water may result in substantial 

down-stream nutrient increases. 

Fig. 36  A thin, floating layer of greenery that opens and closes 

based on wind, currents and other disturbance, is usually a small 

flowering plant (Water Meal or one of the Duckweed species) 

rather than algae. Of course, these too are responding to the nu-

trients in ponds. Duckweed reportedly makes a good pig food 

and, as the name would imply, ducks do apparently eat it too.  
Fig.  37  Many ponds develop a green fringe of floating 

algae. At least some of this may be bottom growth that 

has subsequently floated to the top and then been blown 

to the edges by the wind. 
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Fig.  38.  Dense submerged water weeds grew in some 

ponds. In this case, our sediment coring efforts were some-

what tangled by such plants (that’s our sediment corer rest-

ing on the paddle, its metal sheath still in place. 

Fig. 39 Floating vegetation such as these water lilies can also 

green a pond’s surface, and provide resting sites for frogs and 

dragonflies  These lilies were relatively rare on our ponds. 

Fig. 40  Some of the algae that eventually end up as a green 

surface scum, start out growing attached to the pond bottom. 

Eventually, much of it breaks free and floats to the surface.  It 

is believed that such bottom growth is tapping nutrients 

stored in the sediments. However, in our sample, ponds sup-

porting such growth were not particularly high in sediment 

nutrients.  A shallow pond with a sunlit bottom is also needed 

for such growth. 

Fig.  41  High concentrations of suspended algae can create 

this thick broth. While the nutrients supporting such a greening 

may come from adjacent land use and septic systems, they can 

also, in part, arrive naturally. This is a relatively old pond and 

probably has received a good dose of nutrients from the leaf 

fall of the surrounding forest 
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of more urbanized eastern Pennsylvania and the collection of Massachusetts ponds.  

 In our data, is eutrophication clearly related to surrounding land use? Does it provide yet another 

example of the inter-connectedness of our landscape? At the top of the next page is another one of those 

mathematical table for you to mull over. In all fairness, we could have presented a variety of results to you. The 

details of the results depend in part on what factors one includes and some of the intricacies of how the model is 

run (see appendix for most details of each particular set of results). However, almost any way that we analyzed 

this, land in lawn and in ploughage came out as being significantly positively related to TSI. This pattern held 

true whether we used TSI or total pigments (chlorophyll plus phaeopigments).  

Figs. 42   To index chlorophyll and phaeopigments, we filled a syringe with pond water, attached to the hole at the top of the filter 

illustrated at left. After passing a known amount of pond water through the filter, we opened the filter (see image on right) and re-

moved the filter paper for subsequent analysis. This filter came from a pond with high amounts of dissolved algae; if there had have 

been no algae, the paper would have been white. 

Chlorophyll a

Columbia 

County, NY

Chester 

County, PA

MA (various 

counties)

(ug/L) % of 92 ponds % of 13 ponds % of 24 ponds

<30 <0.95

Oligotrophy:  Clear water, oxygen throughout 

the year in the hypolimnion 13 0 17

30-40 0.95-2.6

Hypolimnia of shallower lakes may become 

anoxic 27 0 42

40-50 2.6-7.3

Mesotrophy:  Water moderately clear; 

increasing probability of hypolimnetic anoxia 18 8 25

50-60 7.3-20

Eutrophy: Anoxic hypolimnia, macrophyte 

problems possible 20 8 8

60-70 20-56

Blue-green algae dominate, algal scums and 

macrophyte problems 18 46 4

>70 >56 Greater densities of algae and macrophytes 3 38 4

TSI Value Attributes (from Carlson)

Table 4. A description of the values of the Trophic State Index (TSI) relative to chlorophyll concentrations and the appearance of 

ponds. The columns on the right indicate how many of our ponds fell into each class; for comparison, we’ve also included data from 

eastern Pennsylvania and from Massachusetts. TSI is a re-expression of Chlorophyll concentrations and so the evident relationship 

between TSI and chlorophyll reflects mathematics and nothing deeper.14 
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 Let’s look at Figure 43. 

 There’s a suggestion of a pattern. Certainly, for example, a high incidence of plowed land appears to be 

connected with higher than average TSI values. Both of these patterns have a ready explanation: lawn and field 

fertilizers are, together with sewage, thought to be one of the prime causes of pond eutrophication. However, 

what about the following Figure 44? TSI appears to be negatively related to degree of neighboring development, 

meaning that higher development is associated with lower eutrophication. This factor was not deemed 

significant by the model we presented above, but it flirted with significance in other models. Is this pattern real 

or just chance? Are the patterns above any more real?  

 We can’t say for sure, but these figures raise questions for future studies and, certainly, the work of 

others supports the role of fertilizers in eutrophication.  

 
 

Dependent Variable: Trophic State Index

% of Variation Explained by Model: 12%

Number of Ponds in Analyses: 99

Significant Variable

Standardized 

Coefficient

"Significance" 

of Effect

Min. Distance to Forest -0.202 0.085

% Lawn within 400' 0.257 0.017

% Plowed Land within 400' 0.313 0.011

% Hay within 400' 0.205 0.051

Fig. 43  The Trophic State Index (based on chlorophyll concen-

tration) in relation to plowed land around the pond. TSI tended 

to increase with plowed land. 
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Fig.  44  Trophic State Index in relation to % developed area. 

The tendency is for TSI to decrease with increasing area in devel-

opment, although, again, note how important the few higher val-

ues are in determining the shape of the apparent pattern. 
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All Photosynthetic Organisms – And the Green Growth Floats All Around: We’d like to leave eutrophication  

and move on to more charismatic subjects, but because eutrophication is such a central issue in the 

consideration of human effects on aquatic systems, we’ll take one more look at it. Above, we indexed 

eutrophication by looking at algal growth measured on one date in the year. What about data from other times 

of the year and from higher plants? After all, anybody who owns a eutrophic pond knows that it can pass 

through a variety of colors and textures during the year, and that, furthermore, other green organisms, such as 

Duckweed and pond weed may also become abundant. We had data on estimated algal growth during May, 

total aquatic plant coverage from July and August botanical inventories, and Duckweed abundance during 

September (when TSI data was also collected). We indexed ponds by calculating the average relative amount of 

growth of each of these aspects of green-ness for each pond. We called this “Average Growth”, and let’s take 

one last look at eutrophication measured in this way before moving on. Here’s a strikingly simple model that 

explains nearly a third of the variation in average growth (just to give you an idea of the predictive power, or 

lack thereof, of such a mathematical model, we’ve included Figure 45) : 

 Average growth decreased with the presence of fish in ponds (Fig. 46) and as lawn or neighboring forest 

increased (Fig. 47).  The effects of fish  on aquatic growth should not be surprising—after all, people often 

stock their ponds in order to reduce plant growth. We hope the effects of lawn are confusing, not because we 

want to confuse you, but because we just got done claiming that lawn (albeit within 400’ not 100’) was 

positively related to TSI. Chlorophyll measurements went into both TSI and our Average Growth variable, so 

how could there be opposite relationships? Ecologically, 

we can’t explain it, but mathematically perhaps we can 

dissect it. Because Average Aquatic Growth is a 

composite of the four variables mentioned above, it 

should only be negatively related to lawn if at least one 

of the factors other than TSI is strongly, negatively 

related to lawn. In fact, all three remaining components 

of Average Aquatic Growth (i.e., May algal growth, 

summer aquatic plants, and autumn duckweed) were  

negatively related to lawn; with aquatic plants and 

duckweed showing the strongest relationships.  

 Another possible source of confusion is that all 

the habitat variables were intercorrelated. For example, a 

pond surrounded by 80% lawn could not be surrounded 

by more than 20% woods. In the above analyses, plowed 

and pasture land were also related to aquatic growth, 

albeit not as strongly as lawn and woods. In effect, lawn 

may represent more than just lawn. 

 To get around this problem of intercorrelation, 

we conducted a principal component analysis similar to 

what we did with the sediments, only this time, instead of 

entering sediment elemental concentrations, we entered 

Dependent Variable: Average Aquatic Growth

% of Variation Explained by Model: 31%

Number of Ponds in Analyses: 88

Significant Variable

Standardized 

Coefficient

"Significance" 

of Effect

Fish Presence -0.260 0.006

Lawn within 100' -0.325 0.001

Woods within 400' -0.299 0.002

Fig.  45.  Predicted average aquatic growth vs. observed 

values. Clearly,  there is a relationship; clearly, there’s still 

a lot of variation left to explain. 
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our land use data. This resulted in six different habitat “menus” that were completely independent of each other 

(the mathematical process assures that). While these are not as easy to interpret as variables like “% plowed 

land”, they are more valid ingredients in our modeling soup because they represent themselves and not anybody 

else. We won’t tire you with the details of our habitat components (details are in the appendix), however, we 

will tell you that among six components, one represented, more or less, plowed land, another forested land, and 

another was heavy on the lawn. The lawn and forested factors were strongly correlated with Average Growth, 

whereas only the plowed land factor was related, and then only weakly, to TSI. From this, we conclude that 

there was good evidence of a negative relationship between Average Growth and both forest and lawn, but that 

the patterns surrounding TSI were less clear, although there was a hint that plowed land contributed to 

chlorophyll concentrations. We wish it were more clear, but wishing doesn’t make it so. 

 Interestingly, in our nod to Liebig, sediment phosphorus showed no relation with either TSI or average 

growth. Based on published studies of eutrophication, we had suggested a link between sediment phosphorus 

and pond green-ness. However, this was not evident in our ponds. The seven sediment components which we 

identified earlier also did not show any substantial relationship to our eutrophication variables. 

 We’ll move on to some more appealing characters than green pond slime: flowering plants, fluttering 

butterflies, mosquito-eating dragonflies, and croaking frogs. Aside from giving you a glimpse of some of the 

attractive diversity in each group, we’ll take much the same analytical approach as we did with the aspects we 

have already considered. We will ask what landscape factors correlated with, for example, amphibian diversity. 

We will also return to some of our measures of eutrophication (e.g., TSI, Average Growth) and our sediment 

components to see what, if any, effects they might be having on the rest of the biota. 

Eutrophication is an ecological consequence of a pond’s nutrient enrichment. These nutrients (e.g., phospho-
rus and nitrogen) encourage the growth of algae or higher plants. In our data, the growth of such organisms 
was not directly related to sediment phosphorus, although it showed some correlation with surrounding land 
use, specifically it decreased as lawn or forest increased. The presence of fish in the ponds correlated with 

reduction in our measure of total green growth. 
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Fig.  47.  The relation between average aquatic growth and % 

of woodland in the surroundings. As forest increased, aquatic 

growth tended to decline. 
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Fig.  46. The effect of fish presence on aquatic growth. Aquatic 

growth was lower in ponds where fish were present.  
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VASCULAR PLANTS 

 Ponds are interesting places for plant diversity, because they offer habitat for three groups of plants: 

aquatic plants that live submerged or floating in the water itself; wetland plants, rooted in shallow water or in 

wet soil along the shore and emerging from the water; and upland plants that are quite intolerant of “wet feet” 

but often grow right to a pond’s edge if the bank is well drained. As a consequence of this range of conditions, 

in our surveys of 89 ponds we found a total of 369 plant species growing either in the water or along the shore 

within approx. 1 m from the water’s edge. We visited each pond once in the period from June through 

September and attempted complete inventories of all the vascular species (flowering plants and ferns, but not 

mosses) present at the time of visit. The abundance of each species was ranked in the following four classes: 

rare (1-2 individuals seen), uncommon (few individuals seen, or species occurring in a few small patches), 

common (occurs throughout but is well interspersed with other species), and abundant (tends to dominate 

vegetation at least in some larger patches). A listing of all the plants documented at the ponds is available upon 

request.15 

  The following table gives an overview of the composition of the pond flora. 

 

 

  

 

 

  

 

 

 

  

 Of the 369 species, 11% were aquatic plants, 43% wetland plants, and 46% upland species. Of the total 

number of recorded species, 70% were native to our region. This last value is very similar to the percentage for 

Columbia County as whole and in the flora of the entire State of New York, which are both composed of 67% 

native plants. The percentage of native species was highest among the aquatic plants (83%) and the wetland 

plants (89%). However, both of these more pristine groups of plants did have a number of invasives in their 

midst.16 

 The most frequently encountered species (found at more than 50% of the study ponds) were Rice Cut-

grass, Spotted Jewelweed, Waterpepper, Sensitive Fern, Arrow-leaved Tearthumb, Purple Loosestrife, Common 

Water Purslane and Soft Rush. We looked at the frequency of occurrence in our study ponds for each species: 

more than 100 species were documented at only one pond; the average number of plant species recorded from a 

pond was 35; and the maximum from any one pond was 84. 

 Species of conservation interest found at the ponds included the state-protected Winterberry, Flowering 

Dogwood, Turtlehead, Cardinal Flower, Nodding Lady’s Tresses (an orchid!), several fern species and the 

aquatic plants Spiny Coontail and Hill’s Pondweed, as well as the regionally rare or scarce Whorled Milkwort, 

Blue Cohosh, Green-headed Coneflower, Great Solomon’s Seal, Silky and possibly Prairie Willow, Halbert-

Total No. in Given 

Class

No. of Native 

Species

No. of Species of 

Conservation 

Interest1)

No. of Invasive 

Species2)

Total Number of 

Plant Species
369 259 25 25

Number of Wetland 

Species
158 140 10 8

Number of Aquatic 

Species
41 34 3 4

Number of Upland 

Species
170 85 12 13

1)

1) Species of Conservation Interest are either state-protected species or species recognized as regionally rare or 
scarce by Hudsonia.6  

2) Invasive Species as defined by the Invasive Plant Atlas of New England.16 
 

Table 5. Summary of the composition of the pond flora of 89 study ponds in Columbia County. 
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leaved Tearthumb, Mountain Maple, Giant Ragweed, and several grass and sedge species.  

 Doubtless, the upland species growing around the shores of ponds contribute to the overall diversity of a 

pond’s life. However, we found little reason to believe that the characteristics of the pond have much of an 

influence on the composition of the surrounding upland vegetation. Therefore, we focus on the aquatic and 

wetland plants of the ponds during the following analyses of the relationships between pond vegetation and 

pond characteristics, surrounding landscape, and other life forms in and around the pond. 

  

Native Wetland Plants – A Foot in Both Camps: As the regression table below indicates, the total number of 

native wetland plant species of a pond was positively correlated with the amount of wetland area in the 

surroundings (Fig. 48) and with water depth in the pond, but negatively correlated with the proportion of 

developed land within 100m of the pond (Fig. 49). 

 Therefore, characteristics of both the pond itself as well as the surrounding landscape, significantly 

correlate with the species diversity of native wetland plants. A pond embedded in a larger wetland area is likely 

to have a larger number of native wetland plants growing in and immediately around it, than a pond of 

otherwise similar characteristics, but located within an upland surrounding. Ecological reasons for this pattern 

might be the ease of arrival of plant propagules (e.g., seeds) and the advantages for a plant to be part of a larger 

Dependent Variable: Number of Native Wetland Species

% of Variation Explained by Model: 21%

Number of Ponds in Analyses: 83

Significant Variable

Standardized 

Coefficient

"Significance" 

of Effect

Abundance of Nearby Wetland 0.268 0.012

% Developed within 100' -0.269 0.011

Pond Depth 0.239 0.026
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Fig. 48. The number of native wetland plant species around each 

pond in relation to the amount of wetland adjacent to the pond. 

More wetland, more wetland plant diversity. 

Fig. 49. The number of native wetland plant species in relation 

to developed area within 100’ of a pond. Diversity reached its 

highest levels in ponds  where development was lowest. 
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Fig. 50. Grass of Parnassus. A calcicole (i.e., 

limestone-loving) species often associated 

with other rare plants. 

Fig. 51. Sweet Flag. Another species of cal-

careous wet meadows. 

Fig. 52. Turtlehead. One of the more com-

mon wetland flowers; an important food 

plant for the Baltimore Checkerspot Butter-

fly. 

Fig. 53. Yellow Star Grass. This flower is not 

a grass, but rather a small, wild relative of 

the daffodils; it is occasionally found in wet 

meadows. 
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Fig. 54. Nodding Lady’s Tresses. We found 

this native orchid in the vicinity of two study 

ponds. 

Fig. 55. Halbert-Leaved Tear-Thumb. This 

Tear-Thumb is much rarer  than  Arrow-

leafed Tear-Thumb; both are wetland spe-

cies. 

Fig. 56. Cardinal Flower. This state-

protected wetland plant was found only once 

in our study. It was growing around the 

shore of a pond and along its outflow. Hum-

mingbirds favor this flower. 

Fig. 57. Lobelia. This rare relative of the 

Cardinal Flower was also found at only a 

single site—a wet meadow near one of our 

study ponds. 
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population (e.g., to avoid inbreeding). Similarly, a pond embedded in a larger undeveloped area is likely to 

harbor more native wetland species than a pond in the immediate vicinity of development. Pond depth might be 

a positive factor for native wetland species diversity because the pond and its surrounding wetland vegetation 

are better buffered from the effects of drought than a shallow pool that might periodically dry out. In one set of 

regression models, the presence of fish was found to be highly correlated with wetland plant diversity, however 

we believe that this result was probably due to a correlation of fish presence with pond depth and with adjacent 

wetland. 

 

Invasive Wetland Plants – Looking for the Sweet Life: The diversity of native plants is one indicator of the 

“health” or “degree of naturalness” of a plant community. Another indicator is the absence or small number of 

invasive plant species. We found eight species of invasive wetland plants at the study ponds, the most 

frequently observed were Purple Loosestrife (52% of ponds), Reed Canary Grass (45%), Bittersweet 

Nightshade (31%), and Common Reed (20%). Here’s the correlation table: 

Dependent Variable: Number of Wetland Invasive Species

% of Variation Explained by Model: 44%

Number of Ponds in Analyses: 80

Significant Variable

Standardized 

Coefficient

"Significance" 

of Effect

Soil Calcareous Class 0.252 0.009

Minimum Distance to Paved Road -0.286 0.002

% Pasture in 400' Circle -0.338 <.001

Pond Age (Square Root) 0.259 0.006

Pond Water pH 0.219 0.019
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Fig. 58. Number of invasive wetland plant species compared to soil 

calcareous class (based on Columbia County Soil Survey as classified 

by Hudsonia6). More calcareous sites tended to have more invasives. 

NC = Not Calcareous,  SC = Somewhat Calcareous, C = Calcareous. 
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Fig. 59. The number of wetland invasive species versus the 

distance to the nearest road.  Invasive species tended to be 

most common when roads were nearby. 
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The number of invasive wetland plants was significantly negatively correlated with the distance to the nearest 

paved road (the further away the nearest paved road, the fewer invasive species) and with the amount of pasture 

in the vicinity of the pond (the more pasture land, the fewer invasive species). In general, ponds with more non-

agricultural development in their vicinity, tended to have a higher number of invasive wetland species. This 

correlation might reflect a direct cause-effect relationship, where more non-agricultural development increases 

the likelihood that propagules of invasive species arrive at the pond, either through escape from ornamental 

gardens (e.g., Purple Loosestrife) or through spread along roads/road-side ditches. Furthermore, development 

and its associated impacts (e.g., runoff from roads and lawns, leaking septic systems) might benefit invasive 

over native wetland species. 

 Aside from the surrounding landscape factors, the number of invasive wetland species was also 

significantly correlated with the pH of both the pond water (measured directly) and the underlying soil type (as 

derived from the Columbia County Soil Survey and classified according to pH by Hudsonia). Calcareous soils 

and more alkaline waters tended to support more invasive wetland species. Examining the distribution patterns 

of the four most common invasive wetland species, three showed a clear preference for calcareous conditions: 

Common Reed, Purple Loosestrife and Reed Canary Grass. They occurred on 30%, 70% and 52% , 

respectively, of the ponds on calcareous or potentially calcareous soils, while being found around only 7%, 32% 

and 36% of the non-calcareous ponds. 

 

Native Aquatic Plants – The Older, The Better: The diversity of native aquatic plants (for our purposes defined 

as submerged or floating) in the ponds was also significantly positively correlated with the amount of 

surrounding wetland area as the following regression table indicates: 

 

Again, ponds embedded in larger wetland areas might be 

more likely to support a diverse aquatic flora because the 

plant propagules are easily dispersed into the pond from 

the surrounding populations. Furthermore, aquatic plant 

diversity was significantly higher in older ponds. This 

may have been due to the accumulation of species over 

time and/or diversity-favoring, ecological characteristics 

in older ponds. 

 

Invasive Aquatic Plants – Wanting BOB (Big, Open & 

Basic): We found four invasive aquatic species in our 

study ponds. Eutrophic Waternymph occurred in eleven 

ponds, Curly Pondweed in six, Water Chestnut in five, 

and European Water-milfoil in two ponds of the 89 ponds. 

As the regression table on the next page indicates, the 

number of invasive aquatic species was positively 

correlated with pond size and the distance of the pond 

from large forest patches, as well as water pH and alkaline 

sediments (Fig. 61). Examining the distribution of each of 

these invasive species individually, Curly Pondweed 

Dependent Variable: Number of Native Aquatic Species

% of Variation Explained by Model: 27%

Number of Ponds in Analyses: 81

Significant Variable

Standardized 

Coefficient

"Significance" 

of Effect

Pond Age (Square Root) 0.315 0.002

Abundance of Nearby Wetland 0.355 0.001
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Fig. 60. The estimated age of a pond vs. the diversity of 

native aquatic plants. Older ponds were more diverse. 
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showed a very clear preference for high pH. We did not find 

it in any of the 65 ponds with a water pH lower than 8, but it 

did occur in four of the 16 ponds with a pH of 8 or higher. 

 

Interactions of Pond Plants with Animal Life:  As will be 

mentioned in the section on amphibians, the shelter provided 

by plants growing in and around ponds becomes important 

for frogs and salamanders especially in those ponds where 

predatory fish are present. We have no reason to expect the 

species diversity or composition of that vegetation to be of 

any importance, as long as its structural characteristics 

provide good hiding places for both tadpoles and adults. 

 Butterflies depend on plants both as adults, with 

nectar as their main source of food and as larvae, with most 

caterpillars eating leaves. Adults tend to drink nectar from a 

wide range of flowering plant species, taking advantage of 

whatever is available. A place with a diversity of plants 

offering plenty of nectar throughout the season will usually 

be found and frequented by the highly mobile butterflies, at 

least within the regional context of Columbia County.  The 

story is very different, however, for their caterpillars, which 

often depend on a very small number of host species . Some 

of our regionally rare, wetland butterfly species, such as 

Baltimore Checkerspot, Eyed Brown, Bronze Copper, Black 

Dash, Mulberry Wing, and Broadwing Skipper, lay their eggs mostly or exclusively on wetland plants and 

depend on these plants for the successful rearing of the next generation. However, our observations of these rare 

butterflies where too scant and some of their food plants too wide spread to show any significant correlation 

between the occurrence of the butterflies and their respective food plants.17 

  

 

 

 

 

Dependent Variable: Number of Aquatic Invasive Species

% of Variation Explained by Model: 42%

Number of Ponds in Analyses: 71

Significant Variable

Standardized 

Coefficient

"Significance" 

of Effect

Pond Area 0.320 0.002

Minimum Distance to Forest 0.213 0.029

Pond Water pH 0.245 0.036

Sediment Component 2 0.267 0.016
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Fig. 61. The value of the second sediment component (this 

component represents the sediments typical of high pH (or 

“alkaline”)  ponds. Note that because there were so few 

values for invasive aquatics, the dependent variable is, 

uncharacteristically, shown on the x-axis. 

We found 369 species of plants in or around our ponds; 270 of these were native. The diversity of native 
aquatic and wetland plants were positively correlated with the abundance of nearby wetlands. Invasive wet-
land and aquatic species were both favored by higher pH of soil and water. Furthermore, invasive wetland 

species became more diverse in the vicinity of roads, and invasive aquatic species became more diverse with 
increasing distance from forest. 
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AMPHIBIANS – VOCAL HERALDS OF CHANGE 

 Most frogs (fig. 62) and salamanders rely upon 

water bodies for at least part of their life cycle. While 

some of these favor streams, many breed in ponds. We 

tallied ten different species in the ponds we studied 

(Table 6), although the number at any one location 

ranged from zero to eight. Some species, such as 

Wood Frogs, Tree Frogs, Spring Peepers, and Mole 

Salamanders (Ambystoma spp.), spend much of their 

adult lives in upland areas that may be relatively far 

from water, but then return to ponds to breed and lay 

eggs (Figs. 63, 64, 66-68). The adults of other species 

(Red Spotted Newts, Bull Frogs, Green Frogs, 

Leopard Frogs and Pickerel Frogs) are less apt to stray 

from wetlands. Many species metamorphose the same 

summer that they hatch, however at least a couple of 

species (Green Frog and Bull Frog) may remain as 

aquatic larvae for a year or more. In a regionally 

unique life history pattern, the “punk” teenagers of the 

Red Spotted Newt, i.e., the Red Eft, wander widely (as most local hikers know) before the adults return to an 

aquatic life style.18 

 Few residents of our wetlands are better known or, at least during some times of the year, more 

conspicuous than our frogs. The worldwide decline in frogs has received substantial attention of late. The 

immediate causes of this decline seem diverse, although they may all ultimately reflect increased environmental 

stress. While we don’t have the historical data to look rigorously at frog decline, we can look for current factors 

that might be affecting amphibian occurrence in our landscape.19 

 We surveyed most frogs by following the Frogwatch protocol. This method involves listening for frogs 

on warm nights after sunset (that may sound romantic, but it got 

rather buggy). All of our region’s frogs call as a way of 

attracting mates and establishing territories. Their calls are, with 

a little practice, distinguishable, and we tried to visit each pond 

three times during the summer to record species heard and the 

intensity of their calls on a scale of 1 to 3.20 

 Salamanders, including newts, do not call, and the 

Wood Frog has only a very brief, early-spring calling period. 

We surveyed for these species visually, counting egg clusters in 

the case of Spotted Salamanders, Jefferson Salamanders, and 

Wood Frogs, and tallying adults in the case of Red Spotted 

Newts. We standardized our visual counts by length of pond 

bank inspected. 

 While we believe that this methodology provided a 

fairly complete description of each pond’s amphibian fauna, 

certain species (e.g., Marble Salamanders) would not have been 

detected by this method, and we have no doubt that in some 

cases the rarer species eluded our counts. 

 The Green Frog was by far our most common species. 

This frog is a widespread generalist, found in ponds and along 

creeks. Our least common was the Leopard Frog – it was found 

at two sites on a single farm. American Toad was also relatively 

uncommon, however we think that this may be partially due to 

its relatively brief breeding period, its somewhat inconspicuous 

Fig.  62.  A Leopard Frog. This was our rarest amphibian, it 

was found on only one farm. Interestingly, it appears to be 

relatively common farther west in the State, but in those loca-

tions the Pickerel Frog is apparently scarcer than here.  

Table 6. The  occurrence of amphibians at the 93 

ponds which we surveyed. Based on egg mass size 

and location, we believe that Jefferson/Blue-spotted 

Salamanders were also present, but we did not tally 

them. 

Amphibian Species

% of 93 

Ponds 

Where 

Found

Green Frog 89

Spring Peeper 55

Bull Frog 42

Grey Tree Frog 42

Spotted Salamander 41

Red-spotted Newt 31

Wood Frog 29

Pickerel Frog 27

American Toad 15

Leopard Frog 2
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eggs and the fact that, during breeding, it seems to cluster more intensively than some other species. Generally 

speaking, American Toads have not been an unusual sight in our region. Other amphibians occur in Columbia 

County, but either favor different habitats (e.g., stream salamanders) or, like the Marbled Salamander, were not 

“caught” by our survey techniques. 

 Our prime measure of amphibian species abundance (average frog calling intensity) was very highly 

correlated with amphibian diversity (Fig. 65). This 

suggests that, not surprisingly, those areas 

providing good habitat for any one species, usually 

were beneficial for a range of species. Given the 

close relationship between these two variables, it 

would not be correct to treat these as two separate 

measures. Therefore we estimated the overall 

amphibian abundance for each pond by summing 

the relative abundance of each species including 

those censused visually. More diverse ponds had 

more apples in the barrel, ponds with higher 

abundance had heavier apples. Either way, the 

weight of the barrel increased, and “total 

amphibian abundance” is our measure of the 

weight of the barrel. 

 As the regression table on the next page 

indicates, we looked at the factors which were 

correlated with Total Amphibian Abundance.  

The pattern seems relatively strong (nearly a third 

of the variation predicted) and the interpretation 

relatively straightforward. We’ve introduced one 

of our habitat menus here because this ecological 

investigation would get too contorted if we had to 

constantly hedge our remarks by discussing the inter-

correlatedness of habitat characteristics. The habitat  

Fig.  63.  Pickerel Frog eggs. These are found in tight clusters 

the size of a small grapefruit. Eggs are surrounded by rela-

tively little jelly compared to those of wood frogs. The develop-

ing embryo is distinctly bicolor. 

Fig.  64. A diverse set of amphibian eggs. Pickerel Frog eggs 

are the darker clusters; the looser, lighter clusters that are 

nearer the surface appear to be from Wood Frog with some 

cloudier salamander egg clusters evident in deeper water.  
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Fig. 65. The number of amphibian species at a given pond vs. the 

abundance of amphibians as indexed by frog-calling intensity. Di-

verse ponds not only tended to have more species but also more 

individuals. 
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component that entered, and entered strongly, was the one 

associated with widespread non-agricultural development. To 

use a term from our gastronomic explanation of principal 

components, it indicated a “diet” high in developed land, houses 

and roads. Amphibian abundance showed a clear, negative 

relation to this factor, meaning that the more residential or 

commercial development there was, the lower the amphibian 

abundance (Fig. 69). This relationship was echoed in the pattern 

of total amphibian abundance relative to land use categories 

(Fig. 70). 

 Three other pond characteristics were related to 

amphibian abundance: pond size (larger ponds meant more 

amphibians, even though we attempted to control pond size in 

some of our abundance measurements), average growth of algae 

and aquatic plants (more growth led to more amphibians), and 

the extent of adjacent wetland (more adjacent wetland, more 

amphibians; we’ll see this factor again!). None of these 

Fig.  66  A Red-Spotted Newt checks out a cluster of Wood Frog eggs. 

These newts will prey upon such eggs.  Fig.  67. Mole Salamander eggs, probably Spotted Sala-

mander, although a small cluster  might also be Jefferson/

Blue Spotted. Spotted Salamander egg clusters are fre-

quently surrounded by an opaque jelly resembling cooked 

egg white, rather than the clear jelly evident in this photo-

graph. The eggs generally remain healthy. 

Dependent Variable: Total Amphibian Abundance

% of Variation Explained by Model: 36%

Number of Ponds in Analyses: 86

Significant Variable

Standardized 

Coefficient

"Significance" 

of Effect

First Habitat Component -0.409 0.000

Average Aquatic Growth 0.251 0.007

Size of Pond 0.237 0.009

Abundance of Nearby Wetland 0.192 0.038

Fig.  68.  A mating pair of American Toads in a 

farm pond.  
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relationships is surprising. Apparently, the degree of vegetative growth in our ponds generally benefited 

amphibians more than it harmed them. Aside from providing food for some larvae, vegetation also provides 

shelter from predators. Others have suggested that vegetation may help shelter amphibians from predators. We 

therefore compared the relationship of total amphibian diversity with and without fish to our classification of 

shoreline vegetation (Figs. 71 and 72). The resulting patterns showed elevated amphibian abundances with 

increased shoreline vegetation only when fish were present. This supports the notion that such vegetation 

provides meaningful shelter from predators.  

 How did each amphibian species fare? While we won’t try your patience by profiling the patterns 

associated with each species, we do want to highlight a few patterns that may help you understand a bit more 

about pond ecology.  Of the nine amphibian species for which we had adequate data, the abundances of six 

species (Wood Frog, Spotted Salamander, Newt, Spring Peeper, Pickerel Frog and American Toad) were 

negatively related to non-agricultural development, while that of three (Bull Frog, Green Frog, Tree Frog) 

showed no pattern. Half of the negative relationships were considered statistically significant. Fish presence was 

associated with decreased abundance of Wood Frogs and Tree Frogs. Sediment effects were less clear. Only 

Spring Peepers and Spotted Salamanders were significantly negatively related to sediments that regularly 

exceeded ecological effect standards, although Tree Frog, Green Frog and Wood Frog showed similar 

tendencies.  

 We looked at one group, vernal pool amphibians in a bit more detail. These are the species which spend 

much of the year in forests, coming down only briefly to breed in neighboring ponds. As we mentioned earlier, 

these are species which require not only healthy ponds but healthy uplands. Several authors have shown that the 

occurrence of vernal pool species is determined, in part, by the presence of adequate upland habitat in the 

surroundings. We pooled (forgive the pun) Wood Frog and Spotted Salamander abundances to come up with a 

single index of vernal pool amphibian abundance, we then asked how that related to neighboring woods (Fig. 

73). Obviously, woods aren’t the only thing that these critters need (indeed, fish absence was another key 

ingredient in statistical models), yet without forest, these species were not common.21 

 In sum, amphibians show more pronounced correlations with the nature of the surrounding land than did 
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Fig. 69. The relationship between non-agricultural development 

(our first habitat component) and total amphibian abundance. 

Higher levels of development were associated with lower abun-

dances. 

Fig. 70.  Amphibian abundance and a classification of the 

land use context around each pond. Abundances were high-

est in ponds located in agricultural settings or where there 

was neither agricultural nor residential use.  
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either pond chemistry or eutrophication measures. This 

shouldn’t be surprising, given that most of these species 

must actually live part of their lives in that landscape. 

These results emphasize the importance of thinking in 

landscape terms when conserving amphibians. The 

possible relationship to sediment toxicity is worrisome 

– some of the toxins in our sediments may be due to 

atmospheric deposition. If so and if some amphibians 

are affected by that deposition, then their conservation 

would require more wide-ranging changes than 

“simple” habitat management. Consideration of our 

own health should have already told us that (the EU, for 

example, estimates that air pollution shortens the lives 

of its citizens by an average of eight months).22 
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Fig.  71. The relation between shoreline vegetative cover and 

amphibian abundance in  the absence of fish. If anything, am-

phibian abundance was lower in ponds with much cover. 

Fig.  72. The relation between shoreline vegetative cover and 

amphibian abundance in  the presence of fish.  Amphibian abun-

dance appeared to increase with increasing shoreline cover. 

Fig. 73.  The abundance of vernal pool amphibians in relation 

to extent of nearby woods. These species depend on wooded 

uplands during most of the year; their eggs appeared to be 

most common in ponds with abundant adjacent woods.  

We found at least 10 species of amphibians in our 
ponds. Their occurrence was extensively correlated 
with habitat and landscape conditions. Non-
agricultural development had a strong, negative  ef-
fect on overall amphibian abundance. Density of 
shoreline vegetation was positively related to total 
amphibian abundance, but only in the presence of 
fish. Vernal pool amphibians tended to be most com-
mon in ponds near forest. 
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DRAGONFLIES & DAMSELFLIES – OF WATER AND AIR 

 Odonates (the name taxonomists have given to this 

group) have aquatic larvae. As such, adults are found around 

ponds as they emerge from the water and when they return to 

breed.  (See Figs. 74-77  for illustrations of some local 

odonates.) Aquatic invertebrates have, in general, been widely 

used to evaluate the quality of aquatic habitats, although this 

has been more extensively applied to streams than ponds. 

 We surveyed adult odonates visually. Because our goal 

was to list all species flying during our visits, and because 

ponds varied in characteristics, we used variable length surveys 

and then standardized counts based on duration. For the most 

part, we followed the New York State Odonate Survey’s 

protocol. Species which required close inspection were 

captured with a net and their wings were “pinned” to a 

magnetic board for photographing and inspection. Although a 

few specimens were kept for definitive identification, most 

were released after inspection. By the time the surveys were 

nearing completion, almost all species could be readily 

identified on the wing, and capture was generally not necessary. 

(One soon learned, for example, that the “snitches” were 

Eastern Amberwings, while the Jumbo Jets were usually 

darners of some flavor.)23 

 Different species of dragonfly and damsel have different 

flight seasons. Although we tallied all species that we saw 

during our surveys, only those species flying for most or all of 

our June – early September survey period were included in our 

statistical analyses. The timing of dragonfly surveys can also 

affect the abundance registered. Not only does hour of the day 

matter, but weather also determines how many dragonflies are 

flying. Our logistics did not allow us to take these 

considerations fully into account, although the majority of 

surveys were done between 10:00 am and 4:00 pm on rainless 

days between early June and late August. At the least, we have 

no reason to believe the effect of time and weather was other 

than random. 

 We found 47 species of dragonflies and damselflies 

during our surveys (Table 7). This is probably around a third of 

all dragonfly species that occur in the region. It is also a can of 

worms. How does one look for patterns in such diversity? We 

would probably not have any readers left were we to try to take 

you through a species by species analysis of occurrence. The 

compromise, aside from looking at total dragonfly abundance 

in the same way that we looked at amphibian abundance, is to 

look at the fate of a subset of these insects. Speaking broadly, 

pond odonates can be classified as generalists and specialists. 

Some species occur in a wide variety of pond types and even in 

certain flowing waters; others have more restricted 

distributions, occurring mainly in temporary ponds or marshy 

Occurrence of Dragonflies and Damselflies

Columbia County Ponds

(89 ponds visited)

Species

% of 

Ponds 

Where 

Found

fragile forktail 81

eastern forktail 78

red meadowhawk 62

slender spreadwing 53

eastern pondhawk 52

blue dasher 44

widow skimmer 42

12-spotted skimmer 39

common whitetail 36

variable dancer 28

azure bluet 25 S

common green darner 24

eastern amberwing 24

slatey skimmer 18

familiar bluet 17

black saddlebags 16

orange bluet 16

undet'd darner 12

spotted spreadwing 10

sedge sprite 9 S

dot-tailed white face 8 S

skimming bluet 8

sweetflag spreadwing 8

halloween pennant 7 S

band-winged 

meadowhawk 7
amber-winged 

spreadwing 6 S

hagen's bluet 6 S

swamp spreadwing 6 S

beaver/common 

baskettail 6

ebony jewelwing 6

aurora damselfly 4 S

calico pennant 4 S

double striped bluet 3

shadow darner 3

marsh bluet 2 S

lancet clubtail 2

atlantic bluet 1 S

big bluet 1

chalk-fronted coporal 1 S

eastern red damselfly 1

tourquoise bluet 1 S

harelequin darner 1

lancet darner 1

rackettailed emerald? 1

southern spreadwing 1

stream cruiser 1

unicorn clubtail 1

vesper bluet 1Table 7. (Right) A list of the occurrence of dragonfly species in our ponds. Species marked 

with an “S” were included in our Specialist Odonates category. 
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areas. The former group tends to include the more common species on our list (e.g., the forktails, pondhawk, 

dasher and skimmers), while the latter group tends to include, as one would expect, some of the rarer species. 

 Based on a review of habitat requirements, we included the following species in our “specialist” group: 

Sweetflag Spreadwing, Swamp Spreadwing, Atlantic Bluet, Azure Bluet, Hagen’s Bluet, Calico Pennant, and 

Halloween Pennant. The details are surely debatable, but we will call this group the “Specialists”. We call the 

Fig.  74.  A Spreadwing preying on one member of a mated 

pair of Phantom Craneflies. Both species occurred regularly 

around our grassier, shrubbier ponds. Dragonflies and dam-

selflies are insect predators and may help control mosquito 

and blackfly populations. 

Fig.  75.  A Dragonfly (possibly a Meadowhawk) excloses. 

Dragonflies and damselflies lay their eggs in the water and 

these develop into aquatic larvae which eventually crawl up 

into the air and “exclose” to reveal the winged adult. 

Fig.  76. A damselfly, probably a Skimming Bluet, rests on 

duckweed. Damselflies have dantier bodies than dragon-

flies and close their wings over their backs when landed. 

Fig.  77.  A Halloween Pennant. Gaudy as some butterflies, we 

considered the pennants to be some of our specialized odo-

nates. This dragonfly is holding its wings open in the typical 

perching stance of dragonflies. We caught (and then released) 

a couple of these to inspect when we were still learning, how-

ever, as one can easily imagine, they could be readily identified 

on the wing.  
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remainder “Generalists”. Below, we present two sets of analyses – one for our so-called specialist species and 

one for the generalist group. It seems logical to do both. On the one hand, one would like to simply know how 

conducive a given habitat is to your run-of-the-mill odonates that might use it; on the other hand, by 

highlighting what might be somewhat more sensitive species, we might better understand how suitable our 

ponds were for the more discerning species.24 

 Please note, specialist and generalist are relative terms – a species that might be a habitat generalist 

might be a specialist in other regards (e.g., courtship); furthermore, we were particularly interested in the group 

that tended to favor a restricted set of pond habitats. The Big Bluet, for example, is thought to be something of a 

slow river “specialist”, that species’ occurrence in one of our ponds near the Hudson probably reflected the 

location of the pond rather than the habitat it provided; we did not classify Big Bluet as a specialist. 

 Here’s the regression report that looks at the factors correlated with the abundance of our specialists: 

This is not a terribly strong set of relationships, only about 15% of the variation is explained. The presence of 

fish was associated with reduced numbers of specialist dragonflies, while their abundance increased with the 

amount of pasture in the proximity. The relevance of fish has been noted by others; fish can be direct predators 

on larvae and, to some degree, on adults. The specialists were, as we defined them, those species which were 

reported to be restricted to vernal (seasonal) ponds and marshy areas. One of the main ecological consequences 

of a vernal pool is the absence of fish, and vernal pool organisms tend not to be adapted to fish.  

 The relevance of grazed margins or of pasture (Fig. 78) was less intuitive for us than the role of fish. In 

the case of the dragonflies (and unlike the case of butterflies which we shall explore next), we believe that this 

correlation may have been primarily due to a relationship between the abundance of these odonates and the 

vegetation of the pond margins (Fig. 79).Yet, read the following description of good pond margin habitat, taken 

from a Scottish document on habitat management for dragonflies:  

 

 An ideal situation consists of a mixture of both long and short grassland and even bare  

 ground near the water’s edge, with scrub and woodland nearby. This should provide  

 areas for hunting, roosting and basking away from the intense competition that can exist  

 at the breeding site itself. 25 

 

Although the authors don’t say so, this is quite a good description of the margins of a pond in extensively 

grazed pastureland. Most specialist dragonflies apparently shun heavily shaded, densely-wooded pond banks 

and yet are not at home along the close-clipped, tidy margins of lawn ponds. Ponds in pasture are apparently a 

happy medium. Given that fish were more common in residential than agricultural ponds and few people graze 

their lawns, specialist odonates were more common around agricultural rather than residential ponds (Fig. 80).26 

 The only factors “significantly” correlated with the abundance of generalist dragonflies and damselflies 

were those related to pH. Ponds on more alkaline soils had more odonates (Fig. 81). We have seen a similar 

importance of pH amongst plants. 

Dependent Variable: Specialist Dragonflies & Damselflies

% of Variation Explained by Model: 15%

Number of Ponds in Analyses: 84

Significant Variable

Standardized 

Coefficient

"Significance" 

of Effect

Presence of Fish -0.215 0.039

% Pasture within 100' 0.306 0.004

We found 47 species of dragonflies and damselflies during our study. The total abundance of specialist odo-
nates (i.e., those that are reported to prefer marshy areas or vernal pools) was reduced in ponds with fish 

and  higher in ponds with grazed banks, possibly because grazing creates better habitat structure. 
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Fig. 78. The abundance of specialist dragonflies and damselflies 

vs. amount of nearby pasture. These odonates appeared to be 

most common at ponds in pastured landscapes. A similar pattern 

existed with wetland butterflies, although perhaps for a different 

underlying reason.  
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Fig.  79. The abundance of specialist odonates at ponds with a variety 

of bank characteristics. “band” = a narrow band of uncut vegetation 

around banks midst lawn or intensive grazing; “fifty” = pond partially 

bounded by “wild” margin and partially by lawn or pasture; “grazed” 

= pond bounded mostly by extensive grazing; “lawn” = pond bounded 

mostly by lawn; “wild” = pond with unmanaged banks. 
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Fig. 81. The abundance of generalist dragonflies and damselflies 

vs. calcareousness of soils. In our sample, ponds located on more 

basic, alkaline soils tended to have more dragonflies.  
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Fig. 80. The abundance of Specialist Dragonflies and Damselflies 

at ponds in different land use contexts. These insects tended to be 

more common at agricultural  than residential ponds. 
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BUTTERFLIES – A FEW WHO HIDE IN A WETLAND NURSERY 

 Butterflies are not aquatic, yet the caterpillars of certain 

species favor wetland plants that are sometimes found around 

ponds. For example, the caterpillars of Baltimore Checkerspot 

(Fig. 86)feed upon Turtlehead (Fig. 52), while those of the 

Mulberry Wing (Fig. 85) and Black Dash favor sedges. The 

Bronze Copper (Fig. 82) also seems to be confined to wetlands, 

although its food plants (various species of Rumex or Dock) are 

not. Butterflies can thus serve as yet another biological 

perspective from which to evaluate the quality of a wetland. 

 We did visual surveys, roaming the margins of the 

ponds, and doing species-specific counts of all butterflies seen. 

As with dragonflies, the length of the survey was noted and 

counts were standardized based on the duration of the survey. 

We chose this approach over fixed length surveys because our 

primary goal was to list all butterflies flying at the given pond 

during the survey visit. Because ponds differed markedly in size, 

structure, and butterfly abundance, we used varied survey 

lengths. Butterflies were identified on the wing. When 

necessary, a digital camera was used to capture images for 

subsequent identification. 

 Different butterfly species fly at different times of year. 

Often this has to do with the growth timing of their caterpillar’s 

food plants. Although we tallied all the butterflies that we saw 

during each survey, our standardized counts only included those 

which reportedly fly for all or most of our June to early 

September survey period.17  

Fig. 82. A Bronze Copper rests on Blue Flag Iris.  These 

showy little wetland butterflies were relatively uncommon. 

During the summer, we found them at only three of our 

ponds.  

Occurrence of Butterflies

Columbia County Ponds

(92 ponds visited)

Species

% of 

Ponds 

Where 

Found

cabbage white 76

pearl crescent 61

sulphur 51

monarch 50

least skipper 42 (W)

common wood nymph 30

eastern-tailed blue 26

orange sulphur 21

black swallowtail 20

great spangled fritillary 20

baltimore checkerspot 15 W

european skipper 14

tiger swallowtail 13

common ringlet 12

viceroy 11

peck's skipper 8

eyed brown 7 W

meadow fritillary 7

silver-spotted skipper 7

american copper 5

mullberry wing 5 W

northern broken dash 4

black dash 3 W

bronze copper 3 W

comma 3

broad-winged skipper 2 W

little wood satyr 2

red admiral 2

spicebush swallowtail 2

aphrodite fritillary 1

banded hairstreak 1

common buckeye 1

crossline skipper 1

little glassy wing 1

mourning cloak 1

red-spotted purple 1

striped hairstreaks 1

tawny-edged skipper 1

wild indigo 1

Table 8.  A list of the butterflies found around the 

ponds we studied. Species accompanied by a “w” are 

ones that we included in our group of wetland butter-

flies. The Least Skipper, while not confined to wet-

lands, was distinctly more common in such habitat. 
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 We tallied 39 species of butterflies around our 

ponds (Table 8). Most of these were open-area 

generalists, butterflies whose habitat preferences and 

food habits as caterpillars are general enough that they 

have widespread occurrence. However, six or seven of 

these species were more particular. We classified  

Baltimore Checkerspot, the Black Dash, Bronze Copper, 

Broad-winged Skipper, the Eyed Brown and the 

Mulberry Wing, as wetland butterflies, although the last 

was not included in our initial analysis because of its 

relatively short flight season.  

 As with the specialist dragonflies, wetland 

butterflies were most abundant at ponds with grazed 

margins (Fig. 83). However, rather than reflect a direct 

link to habitat structure, we believe this correlation was 

due to the fact that pastured ponds tended to have more 

adjacent wetland habitat, and the butterflies were 

probably responding to the increased abundance of their 

required favored haunts (Fig. 84). It would be interesting 

to explore the occurrence of these butterflies in more 

depth, but wetland butterflies were only recorded at six 

ponds. Such a small number of occurrences limits the 

extent to which we can “chew” these data, and means 

that the few sites where such butterflies were present 

hold heavy sway over any statistical analysis. (Because 
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Fig.  83. The average abundance of wetland butterflies in ponds 

with different classes of margins. See Fig. 79 for an explanation 

of the margin types. Wetland butterflies seemed to be most com-

mon at ponds with grazed margins.  

Fig. 84.  Wetland butterfly abundance around ponds in com-

parison with amount of adjacent wetland. Unlike the special-

ized dragonflies, wetland butterflies seemed to be responding 

to amount of adjacent wetland.  

Fig. 85. A Mulberry Wing nectars at Red Clover. While the 

adults of many butterflies are relatively undiscriminating in 

terms of the flowers that they nectar on, the caterpillars tend to 

be more picky. The caterpillar of this small wetland skipper 

feeds on sedges.  
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of this small sample size, we’re not including any regression table for butterflies). By including one species of 

wetland butterfly which flew only for part of the year (the Mulberry Wing), and another which was more 

loosely tied to wetlands (Least Skipper), we could increase our sample size. The result? Variation increased but 

the pattern remained the same – more surrounding wetland, more wetland butterflies.  

 Most of the butterflies we saw were generalists. There is no particular reason to suppose that they have 

any particular relation with ponds, and we will not explore their occurrence in any detail. Suffice it to say that 

they appeared to show surprising correlations with pond depth and sediment chemistry.  We believe the former 

relation derives from pond depth’s previously-noted relation to age and purpose of a pond, and the concomitant 

broader landscape aspects associated with these differences. The relation to pond sediment chemistry was 

intriguing and, we assume, may reflect relationships to broader regional patterns of pollution deposition.  It is 

not difficult to believe that the abundance of butterflies might be influenced by, among other things, excessive 

lead and copper levels in the soils of their food plants. In that case, the pond sediments are but flags for what is 

occurring in the surrounding land and, likely, affecting the butterflies directly. Intriguingly, other European 

biologists have reported just such a link 

between contamination and butterfly 

declines.27 

 

 

 

 

 

 

 

 

 

 

 

 

THE WHOLE KIT ‘N KABOODLE 

 So far, we have looked at ponds through the “eyes” of four different sets of organisms: plants, 

butterflies, dragonflies, and amphibians. Given the different biologies of these species, it seems reasonable to 

assume that they provide somewhat differing perspectives on the ponds. Yet, at the same time, given that they 

are all living organisms, it would also seem reasonable to assume that they may respond similarly to certain 

aspects of their landscape. True, people from different cultures (and even within cultures) will have different 

ideas of what makes a ‘good’ home; however, they’d probably all agree that warmth, dryness, safety, and 

relative quietness are amongst the desirable traits. Do our organisms show similar consensus around any 

landscape factors? Can we make any broad statements about what favors a diverse pond?  

 It appears we can. To address this question, we standardized each diversity value. For example, we 

calculated the average number of butterfly species around our ponds, divided the observed number at any 

particular pond by that value, and then expressed the difference in terms of a proportion of the total observed 

Fig. 86. Baltimore Checkerspot. The young caterpillars of this wetland 

butterfly sometimes feed on Turtlehead (Fig. 52), although the species ap-

parently has other foods and main not be as tied to wetlands as some other 

butterflies.  

We found 39 species of butterflies around 
our ponds. We classified a small subset of 
these as “wetland butterflies” and explored 
their occurrence in more detail. Wetland 
butterflies appeared to be associated with 
ample wet meadow adjacent to the ponds; 
wet meadow, in turn, was associated with 
grazed areas. Generalist butterflies 
showed a strong relationship to sediment 
chemistry. 
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variation (technically, we divided by the standard 

deviation). This let us express plant diversity (where a total 

of up to 84 species were possible at any one pond) and frog 

diversity (where a maximum of eight species were 

observed at one pond) on the same scale, and likewise 

across the remaining groups. A somewhat analogous 

approach is taken in schools, where a comparable set of 

grades is applied across subjects even though each subject 

area may have a different “grade curve” and a different 

number of tests. 

 First, we asked simply, how intercorrelated are our 

four measures of diversity? Although amphibian diversity 

was uncorrelated with any of the other three measures, the 

plant, butterfly and dragonfly diversity indices were all 

significantly intercorrelated (e.g., Fig. 87). This means, for 

example, that knowing the number of butterflies at a given 

pond can help you predict the number of dragonflies it will 

have, and vice-versa. This may occur because these 

organisms are responding in broadly similar ways to their 

environments, e.g., what’s good for a flower is good for a 

butterfly. Or, it may mean that healthy habitats of one sort 

tended to co-occur with healthy habitats of another. For 

example, people who plant butterfly gardens may also tend 

to treat their ponds more benignly or farmers who left ample 

room for wildflowers, also tended to leave ponds in good order. 

 Thinking about our data in this way led us to conclude these analyses with one final probing for 

correlations between diversity and landscape/pond characteristics. (And you thought you had seen the last of 

those bothersome regression tables!) We calculated the average diversity of a given pond across our four, 

standardized diversity measures. When data were missing for a given taxonomic group, the average was 

calculated based on the reduced set of numbers. This value, which we’ll humbly call Grand Diversity, can be 

thought of as a first estimate of the overall, diversity-supporting value of each pond. Was Grand Diversity 

correlated with any of the environmental factors we measured? 

Here’s the relatively simple model: 

Not surprisingly, two of the factors which we have seen before, pH (Fig. 88) and our non-agricultural 

development component (Fig. 89), were significantly related to Grand Diversity. Increased pH was correlated 

with increased diversity; increased non-agricultural development was associated with diminished diversity. 

While these correlations were highly significant, and readily understandable, they explained only about 10% of 

the total variation in Grand Diversity. As Figs. 88 and 89 illustrate, much variation is left to be explained. We 

will summarize these results another way by returning to the land use categories that we used earlier and asking 

how Grand Diversity compared across ponds in different land use contexts (Fig. 90). As those who have 

Dependent Variable: Average Relative Diversity across Taxa

(i.e., "Grand Diversity")

% of Variation Explained by Model: 12%

Number of Ponds in Analyses: 90

Significant Variable

Standardized 

Coefficient

"Significance" 

of Effect

pH 0.277 0.007

Non-Agricultural Development -0.257 0.013

Fig.  87. The diversity of wetland plants vs. that of dragon-

flies and damselflies. This is an example of a relatively 

strong correlation between the diversity of two distinct sets 

of organisms.   
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followed our results so far might suspect, Grand 

Diversity was highest around relatively wild (yet open) 

ponds, followed by agricultural ponds, with residential 

and mixed use ponds falling noticeably lower. 

 This is fitting closure for our analyses. Two 

factors, one associated largely with the natural 

landscape (pH) and the other primarily a human 

construct (non-agricultural development), may be 

influencing the life of our ponds. The potential for 

agricultural ponds to support a relatively high diversity 

of amphibians has been noted by biologists working 

elsewhere in New York and in the Midwest. Others 

have commented on the diversity of some agricultural 

landscapes for butterflies and grassland plants. We 

believe that such results are important to highlight, as 

we continue to lose agriculture land in the Northeast, 

and given the public perception that agricultural and 

nature conservation are not generally compatible. That 

said, we must also caution that, while both 

conventional and organic farms were included in our 

sample, they are hardly representative of all agriculture 

in the United States or even in Columbia County. 

These results indicate the realizable potential for 

agriculture and nature conservation to co-exist, they do not 

indicate that such a synergy can be taken for granted. 

Finally our results caution us to look at our own 

backyards—neat and trim backyard ponds, beautiful as 

they might appear, do not necessarily benefit the  
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Fig. 88. The relationship between pH and Grand Diversity. Diver-

sity across plants and animals tended to increase with increasing 

pH, although much variation remained to be explained. 

Fig. 89. The relationship between non-agricultural develop-

ment and Grand Diversity. Diversity across plants and ani-

mals tended to decrease as non-agricultural development 

increased.  

Fig. 90. Grand Diversity across ponds surrounded by differ-

ent land uses. Diversity of plants and animals was highest in 

ponds located in relatively unused (but open) areas, followed 

by those in agricultural areas. 
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organisms that live around them. If we want to encourage native diversity around our ponds, we need to do so 

consciously.28 

 The next section is an ecological segue to our final thoughts on management. If you are thinking about 

constructing a pond, we first ask you to think about where you’re putting it, then we ask you to think about how 

you manage it. 

 

Conclusions 
THINKING ABOUT BEFORE – WHAT DO PONDS REPLACE? 

 A central question concerning the ecological role of the newly constructed ponds in our landscape is the 

following: what are they replacing? Are these ponds that are appearing de novo on dry upland? Are they the 

result of digging out wetlands? Are they empoundments of streams? In other words, are our newly-constructed 

ponds adding aquatic habitat where there was none or are they converting one kind of aquatic habitat to 

another? For the ecological bottom line, this is an important consideration: are we building aquatic habitat or, 

perhaps, degrading it? 

 Historical data on land cover is difficult to obtain. Historical aerial photographs can, for example, give 

you a good idea of whether or not open water was present sixty years ago, but judging wetland status can be 

more difficult. We made a preliminary assessment of what habitats dug ponds replace based upon a pond’s 

position in the landscape, its surrounding vegetation, and some historical information. We classified all the 

recent ponds (i.e., ones not present in the 1940s) into four classes: those that we believe probably did replace 

wetland, those that are empoundments on streams or creeks, those that we are fairly sure were dug in upland 

areas, and those for which we have no good idea. While these numbers are hardly precise (Table 9), they can 

The diversity of pond plants, butterflies, and dragonflies was highly intercorrelated. Amphibian diversity ap-
peared to follow somewhat distinct patterns. We calculated a single measure of diversity across plants, drag-
onflies, butterflies and amphibians and gave it the modest name “Grand Diversity”. Grand Diversity increased 

as pH increased (i.e., in more basic or alkaline habitats) and as non-agricultural development decreased. 
This reflects patterns that we saw in our analyses of the individual groups, and illustrates the combined hand 

of nature and humans in producing the patterns we see  

Fig.  91. A natural vernal pool. The rising and falling water 

level of such ponds creates a vegetation structure somewhat 

similar to that of grazed ponds. Importantly, the seasonal 

drying out of vernal pools excludes fish and larger amphib-

ian predators such as Bull Frogs.  The stocking of ponds 

with fish generally reduces their native animal diversity. 

Fig. 92. A dug pond bordered by a beaver-created wet-

land. Beaver ponds have a life cycle from open pond 

through beaver meadow to more or less solid land. When 

beaver are allowed to follow their whims, the lowland 

landscape becomes a dynamic patchwork at various 

stages of flooding and regrowth. 
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help us estimate the possible scale of wetland degradation or creation. 

 Based on these calculations, we estimate that from around ¼ to a little less than ½ of the constructed 

ponds replaced wetland, meaning that pond construction may regularly be concomitant with wetland loss. The 

consequences of stream empoundment may be ecologically mixed – for example, a beaver pond (or a 

constructed analogue) can create valuable wet meadow where there was previously a narrow creek. On the 

other hand, the creation of a well-kempt ornamental pond in an area where a fairly broad and marshy stream 

previously flowed could signify a decrease in ecologically-valuable wetland habitat. Our numbers are very 

rough and our analysis incomplete, however we believe that this is an important topic that should be 

considered as one assess the consequences of our pond building habits. 

 

A FEW BRIEF THOUGHTS ON POND MANAGEMENT - BEAUTY’S IN THE EYE OF THE BEHOLDER  

 Ponds, as many have said, are micro-cosmos or tiny worlds where many of the ecological processes 

occurring on the less-bounded landscape around them are played out in miniature and in relative isolation. 

While this may be a useful perspective, ponds are also in some ways focal points for all that is happening 

around them, semi-discrete points where the net effects of contamination and land use in the surroundings are 

expressed succinctly. A pond is a cosmos in which the shower of materials from the outside world is intense. 

And we have control over at least part of that deluge. 

 A variety of books, articles and websites focus on pond and lake management. We especially 

recommend Winfield Fairchild’s Pond Management web site. The link to this and several other resources are 

listed in the reference section, It is not our goal to review those here. We do want to conclude by tying together 

some of our results with pond management.29 

 First, a pond owner has to decide why they want a pond. Do they want a cattle watering spot? A fishing 

hole? A swim pond? A more natural wetland 

(e.g., Figs. 91 and 92)? Some uses are inherently 

more compatible than others with nature 

conservation. Our results have, for example, 

highlighted an apparent tendency for pasture 

ponds (Fig. 93) to support relatively high 

biological diversity. Rather than there being a 

direct link between pond diversity and cattle, the 

relationship may be more indirect, i.e., the ponds 

that support cattle and those that favor native 

species may have some shared traits. We put 

together Table 9 to facilitate the comparison of 

pond traits amongst ponds of different uses. 

 The characteristics listed across the top of 

the table are ones that our results and or the 

literature have suggested are important for the 

Table 9. Our first approximation concerning the ecological history of our 84 dug ponds. Perhaps 1/4 to 1/2 of the ponds re-

placed pre-existing wetlands or stream corridors. 

Construction Context % of 84 ponds

Replaced Wetlands 23

Empounded Streams 20

Created in Upland 36

Unknown 21

Fig.  93.  A pasture pond. Notice that while the grass is cropped, the 

margins of the pond are relatively irregular, there is emergent vegeta-

tions, shoreline vegetation of varying structure and a wetland margin. 
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native species of ponds: the presence of fish appeared to reduce amphibian diversity when there was little 

shelter, specialist dragonflies seemed to prefer unmowed pond margins; pond nutrient state was related to 

amphibian diversity (in our results, the effects were positive, however the literature has documented the 

negative consequences of high nutrient levels); nearby woods appeared to benefit vernal pool amphibians; and, 

while we did not tally algal control per se, the more highly managed ponds, some of which we know to have 

been treated to reduce algae, were not our most diverse. 

 Our characterization of each type of pond surely suffers from stereotyping, but to a certain degree that 

is our point. An ornamental pond need not have mowed margins, cleaned banks, be located in the middle of a 

golf green and be treated for algae. Yet, it is important to realize that what might seem aesthetically appealing 

to us (e.g., Figs 94 and 95) may not necessarily be the most suitable for supporting native plants and animals. 

Owning a natural pond requires, perhaps, more work on oneself than it does on one’s pond. Semi-natural 

ponds aren’t always easy to appreciate. They can be scraggly, noisy, perhaps buggy, places (e.g. Fig. 96). But 

they can also be intimately beautiful in ways more gaudy water bodies cannot be.  

 As Table 9 suggests, management is not all or nothing. Perhaps one really wants a fishing pond, for 

example. Ensuring that it has margins that are largely, but not necessarily entirely, ‘in the rough’ and allowing 

wet meadow to develop around a seeping outflow is still likely to help diversity. Similarly, a narrow mowed 

strip that lets you peruse your pond without fighting ticks or raspberries, might be integrated into a lighter- 

Fig.  95.  Ponds with close-mown margins and little 

emergent vegetation seemed to be less biodiverse in our 

sample. Happily, although not visible in this picture, cat-

tails had been left along one margin of this pond and a 

vigorous flower garden provided ample nectar for butter-

flies.  

Fig.  94.  This is a pretty, well-kept pond, however the 

close cut lawn which surrounds it and the channelized 

waterways entering and leaving it are not ideal for most 

wetland life. 

Fish

Mowed 

Margins 

Preferred

Marshy 

Shallows and 

Wetland 

Surroundings

Fertilization on 

Surrounding 

Land and/or 

Septic Tank 

Leakage

Woods 

Nearby

"greenness 

allowed"

Irrigation Pond or Watering Hole +/- - + +/- +/- +

Swim/Ornamental Pond +/- + - +/- +/- -

Natural Wetland +/- - + - + +

Fire Pond +/- - + - + +/-

Fishing Pond + +/- + - + +/-P
O
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ASSOCIATED CHARACTERISTIC

Table 9. A characterization of ponds based upon their uses and some associated characteristics that are relevant to nature con-

servation. No doubt this is a simplified classification and exceptions can be found in all categories. “+” means that the given 

pond type tends to have the particular characteristic; “-” means it doesn’t; “+/-” means it can go either way. 
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handed bank management (Fig. 97).  Locating your farm pond near the woods and not stocking it with fish 

can have positive environmental effects even if cattle trampling and manure might bring some negatives. 

 Because so much of what determines how appealing a pond looks to us is fashion, we have found it  

truly helpful to look at the pictures in publications such as the Minnisota DNR’s Lakescaping for Water and  

Wildlife. Very much a gardening book of sorts, this publication does a nice job of mixing the human-created 

with the natural, and helps one form a new vision of what the managed, yet ecologically-valuable surround-

ings of a lake (or pond) can look like.30 

 Finally, and importantly, we believe that understanding pond management depends, in part, on un-

derstanding greater context. For example, while a leaking septic tank may or may not turn your pond into 

pea stew, the nutrients seeping from thousands of such tanks may have major ecological consequences in 

estuaries hundreds of miles away. Furthermore, we need to try to envision the landscape to which most of 

our native species are adapted, and then ask how that compares to our current surroundings. We have done 

that implicitly in this report. For example, the natural ideal that we included in Table 9 and elsewhere in this 

report is a pond more closely resembling a vernal pool or beaver pond than an isolated but permanent 

woodland pond. The last does exist and can be important for biodiversity, however we are living in a land-

scape that is currently perhaps more tolerant of wooded ponds than it is of beaver meadows or vernal pools. 

Our management thoughts need to include consideration of the discrepancy between the landscape that our 

resident species “got to know” evolutionarily and the modern one.  If, for example, you are a non-farmer 

who has purchased recently grazed land that contains a large wet meadow, then you should consider how to 

maintain the openness of that meadow. A laissez-faire approach will likely result in thicket and eventual 

forest. Originally, such openness was probably maintained in the landscape by the fluctuating waters cre-

ated by the activities of beaver and natural flooding; two factors that have been more heavily controlled 

during recent history. Conversely, a small shallow pond nearly surrounded by woods, might best be allowed 

to develop towards (or to remain) a vernal pool rather than being dug out. Vernal pools are disappearing 

from our landscape because they seem like little more than large puddles. It is because we have so drasti-

cally altered the structure and dynamics of our landscape that we must be so conscious in our management. 

 Rather than being a direct management tool, we hope these words are hints and inspiration for pond 

connoisseurs. Once you’re inspired, much can be learned from observation and reading. By realizing what 

your pond does or could harbour, we hope that you grow to appreciate it for what it is: haven for aquatic 

Fig.  96. Another pond with grazed margins indicating what 

may make such a site especially suitable for wetland dragon-

flies and butterflies. Note the varied heights of the emergent 

and shoreline vegetation, and the presence of some shrubs. 

Fig.  97. The owner of this pond has struck a balance be-

tween access and ecology—a narrow mowed strip permits 

ease of access but the shoreline and much of the adjacent 

field is cut much less regularly resulting in ample natural 

structure.  
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species, stop-over for the semi-aquatic, microcosm and part of our macrocosm. Go out. Listen. Sniff. Look. 

Wade. Meet your aquatic neighbors. 
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Notes 
This is still is a work in progress—there are many more references that should be read and included. We 

hope to better our inclusion of other works as time goes on. 

 

1. The report summarizing recent wetland trends is T.E. Dahl. 2006. Status and Trends of Wetlands in the 

Conterminous United States 1998 – 2004 published by  USGS. It is available on-line at wet-

landsfws.er.usgs.gov/ status_trends/index.html. His publication along with G.J. Allord, entitled The His-

tory of Wetlands in the Conterminous United State provides a nice summary of wetland history. It is 

U.S. Geological Survey Water Supply Paper 2425. It is on-line at water.usgs.gov/nwsum/WSP2425 

/history.html. 

2. Our own report, written by us (C. Vispo and C. Knab-Vispo) is entitled The Flora & Fauna of Some 

Columbia County Farms: Their Diversity, History and Management. It was printed by the Farmscape 

Ecology Program in 2006 and a digital copy is available from us upon request. Based on work in south-

east Minnesota, Melinda Knutson, along with W.B. Richardson, D.M. Reineke, B.R. Gray, J.R. Parme-

lee, and S.E. Weick, published the article Agricultural Ponds Support Amphibian Populations in 2004 

in volume 14, pages 669-684 of the journal ‘Ecological Applications’. In the Northeast, J.P. Gibbs, K.K. 

Whiteleather, and F.W. Schueler discussed agriculture and amphibians in their 2005 paper Changes in 

We end our report by considering the application of our results to pond construction and management. 
Perhaps a key first step in managing a human-made pond is considering where to build the pond in the 

first place. We estimated that 1/4 to 1/2 of the dug ponds in our study replaced natural wetlands or stream 
courses. As such, they may have resulted in a decline in the ecological value of the extant aquatic habitat. 
In considering management, we outline the interaction of pond purpose and nature conservation and, we 
hope, stimulate those interested in actively managing their ponds to consider how to incorporate ecology 

into not only the techniques but also the philosophy of their management. 
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Frog and Toad Populations over 30 Years in New York State. It was published in volume 15 of ‘Ecological 

Applications’, pages 1148–1157. 

3. G. Winfield Fairchild’s publication is Ecologically Based Small Pond Management, published in 2004 by 

the Chester County (PA) Water Resources Authority. It can be downloaded at darwin.wcupa.edu/ponds/ 

summary.html. 

4. The use of plants to help remove toxins for sediments and soils is called “phytoremediation”, one web site 

that lists introductory materials is www.mobot.org/jwcross/phytoremediation/. 

5. A summary of acid rain’s effects on the Adirondacks can be found in Acid Rain and the Adirondacks: A 

Research Summary by J. Jenkins, K. Roy, C. Driscoll and C. Buerkett, published by the Adirondack Lakes 

Survey Corporation, Ray Brook, NY, in 2005. It is available on-line at www.adirondacklakessurvey.org/. 

6. A key resource of understanding the biodiversity of our area is Hudsonia’s Biodiversity Assessment Man-

ual for the Hudson River Estuary Corridor by Erik Kiviat and Gretchen Stevens published in 2001 by 

NYS DEC. 

7. For a thorough consideration of our county’s tumultuous geological history, consult The Rise and Fall of 

the Taconic Mountains: A Geological History of Eastern New York written by D.W. Fisher and S.L. Night-

ingale and published in 2006 by Blackdome Press. 

8. OK, so this is a blatant plug for our own work, but heck it’s nice to tie in different parts of one’s life works. 

A discussion of the relation between water nutrients and neotropical fish abundance/diversity can be found 

in chapter 6 of Plants and Vertebrates of the Caura’s Riparian Corridor: Their Biology, Use and Conser-

vation, edited by us and published in 2003 as ‘Scientia Guaianae’ volume 12. If you’re really interested, let 

us know and we’ll send you a copy of the chapter. 

9. The 2003 Wisconsin DNR guidance document referred to is their report QT-732 2003, entitled Consensus-

based Sediment Quality Guidelines: Recommendations for Use and Application. It was assembled by the 

Contaminated Sediment Standing Team and is available on-line at www.dnr.state.wi.us/org/aw/ 

rr/technical/cbsqg_interim_final.pdf. 

10. See, for example, E. Steinnes and A.J. Friedland’s Metal contamination of natural surface soils from long-

range atmospheric transport: Existing and missing knowledge. It was published in 2006, volume 14, pages 

169-186 of ‘Environmental Review’. 

11. A nice short summary of eutrophication and other aspects of lake ecology is available at wa-

terontheweb.org/under/lakeecology/index.html 

12. While all the ponds that we studied were permanent ponds and hence not true vernal pools, the ecologies of 

some of our ponds had vernal pool aspects. To understand more about these pools, we recommend E.A. 

Colburn’s 2004 Vernal Pools: Natural History and Conservation published by the McDonald & Wood-

ward Publishing Company of Blacksburg Virginia. Elizabeth Colburn is based at the Harvard Forest and 

much of the work has regional relevance. 

13. A nice intro to pond gunk and other interesting “aquatic phenomena” is the Field Guide to Aquatic Phe-

nomena published by the Maine DEP, and available on-line at www.umaine.edu/WaterResearch/ Field-

Guide/Field%20guide.pdf. 

14. One of the clearest explanations we found of the Trophic State Index was on-line at dipin.kent.edu/tsi.htm. 

15. The most up-to-date identification reference on regional aquatic and wetland plants is the two-volume 
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Aquatic and Wetland Plants of Northeastern North America by G.E. Crow and C.B. Hellquist. It was 

published in 2000 by the University of Wisconsin Press and recently came out in paperback. 

16. The Invasive Plant Atlas of New England (IPANE) is available on-line at  http://nbii-

nin.ciesin.columbia.edu/ipane/ 

17. Our favorite butterfly book for the identification and ecology of East Coast butterflies is Butterflies of the 

East Coast: An Observer’s Guide by R. Cech and G. Tudor. It was published in 2005 by Princeton Uni-

versity Press. 

18. The two best regional amphibian and reptile books are, in our opinion, M.W. Klemens’ Amphibians and 

Reptiles of Connecticut and Adjacent Regions, published in 1993 by the State Geological and Natural 

History Survey of Connecticut, bulletin No. 112, and the recently-published The Amphibians and Reptiles 

of New York State by J.P. Gibbs, A.R. Breisch, P.K. Ducey, G. Johnson, J.L. Behler and R.C. Bothner, 

published by Oxford and based in part on the NYS Herp Atlas. 

19. A summary of amphibian declines in the “new world” is available at http://www.natureserve.org/ publi-

cations/disappearingjewels.jsp. 

20. The United States Frogwatch web page is www.nwf.org/frogwatchUSA/. Canada also has a Frogwatch 

program at www.naturecanada.ca/cwn_naturewatch_fw.asp. 

21. Aside from the book cited in note 12, the Metropolitan Conservation Alliance of the Wildlife Conserva-

tion Society has published a pair of useful management documents outlining the interaction of land use 

and vernal pool amphibians, these are, from 2004, Habitat Management Guidelines for Vernal Pool Wild-

life, WCS/MCA Technical Paper No. 6, written by A.J.K. Calhoun and P. de Maynadier, and, from 2002, 

Best Development Practices (BDPs): Conserving Pool-Breeding Amphibians in Residential and Com-

mercial Developments in the Northeastern United States, WCS/MCA Technical Paper No. 5, by A.J.K. 

Calhoun and M.W. Klemens. Also see the paper by Gibbs et al. cited in footnote 2, and the paper by A.D. 

Guerry and M.L. Hunter, Jr., entitled Amphibian Distributions in a Landscape of Forests and Agricul-

ture: an Examination of Landscape Composition and Configuration, published in 2002 in the journal 

‘Conservation Biology’, volume 16, pages 745-754. 

22. The report which estimates the health effects of air pollution in the EU is a document of the UN Eco-

nomic and Social Council entitled 2005 Joint Report of the International Cooperative Programmes and 

the Task Force on the Health Aspects of Air Pollution, the document is coded EB.AIR/WG.I/2005/3. It 

available on-line at www.unece.org/env/wge /24meeting.htm. 

23.  More information on the New York State odonate survey is available at http://www.dec.ny.gov/animals 

/31061.html. 

24. We found three books particularly useful for identifying dragonflies and damselflies and beginning to 

understand their ecologies: A Field Guide to the Dragonflies and Damselflies of Massachusetts by B. Ni-

kula, J.L. Loose, and M.R. Burne, published without a date by the Massachusetts Natural Heritage Pro-

gram; The Dragonflies and Damselflies of Ohio edited by R.C. Glotzhober and D. McShaffrey and pub-

lished in 2002 by the Ohio Biological Survey; and Ed Lam’s beautifully illustrated Damselflies of the 

Northeast published (with a lousy binding) in 2004 by Biodiversity Books. 

25. The quotation comes from a web page on dragonfly conservation published by Scottish Natural Heritage, 

www.snh.org.uk/publications/on-line/naturallyscottish/dragonfly/Conservation.asp 

26. A recent scientific paper supports the relevance of habitat structure for odonates but found that grazing 

decreased favorable structure and so reduced diversity. At least a couple of explanations might be possi-
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ble for this seemingly contradictory result: 1) grazing may have been more intense at the sites studied by 

these authors, 2) (and perhaps most important) we compared grazed ponds to ornamental ponds, where as 

the cited paper compared grazed ponds to natural prairie pot holes. It is not difficult to suppose that grazed 

ponds are an improvement over mowed ones, while they are not as beneficial as natural prairie pools. The 

paper in question is Odonates as Biological Indicators of Grazing Effects on Canadian Prairie Wetlands 

by A.L. Foote and C.L. Rice Hornung published in 2005 in the journal ‘Ecological Entomology’, volume 

30, pages 273-283. 

27.  See for example, the paper Evaluating the Impact of Pollution on Plant-Lepidoptera Relationships, pub-

lished in 2005 in the journal ‘Environmetrics’, volume 16, pages 357-373. It was authored by C. Mulder, 

T. Aldenberg, D. de Zwart, H.J. van Wijnen and A.M. Breure. 

28. The references referred to here are the same as those cited in note 2, along with references therein. The re-

lationship between diversity and agriculture is not all love and roses, important negative relations exist, 

especially where agriculture is intensive and pesticide/herbicide use widespread. For example, the cited 

paper by Knutson et al., while concluding that farm ponds can be valuable for amphibians, provides some 

specific management suggestions for avoiding the negative farming influences that they observed (mainly 

associated with intensive grazing). Our central point is that here in the Northeast where most agriculture is 

relatively small-scale and the landscape is rapidly (sub)urbanizing, the profound negative effects of that 

development need to be adequately recognized and, in the face of those effects, the potential for relative 

synergy between agriculture and nature conservation should not be overlooked. 

29. Aside from his manual (cited in footnote 3), G. Winfield Fairchild’s web page 

(darwin.wcupa.edu/ponds/management.html) is a good, practical starting point for pond management in 

our area. Cornell lists some additional web sites at fish.dnr.cornell.edu/Pond/ otherre-

sources.htm?otherresourcesdoc.htm~mainFrame. Tom Matson has published a series of books on pond 

maintenance and construction. His works include Earth Ponds, A Sourcebook for Earth Ponds, and Land-

scaping Earth Ponds. Aside from considering the aesthetic and practical aspects of pond construction, he 

also discusses how to manage them in environmentally sound ways. 

30. The full reference for the lakescaping book is Lakescaping for Wildlife and Water Quality by C. L. Hen-

derson, C. J. Dindorf, and F. J. Rozumalski. It is not dated, but was published during the last decade by 

Minnesota Department of Natural Resources. It appears to still be in print, and we found a copy through an 

on-line bookstore. It abounds with helpful color photographs. 

 


